Abstract

A grouping design method for all-sphere initial design of an eight-mirror projection objective is proposed for extreme ultraviolet lithography (EUVL). By separating the eight-mirror objective into three mirror groups (the object side group, the image side group, the middle group), this method allows designers to calculate the parameters of an eight-mirror objective by the nonobstruction constraints and the conjugation relationships of object image and pupils. Exhaustive paraxial search for the middle group is implemented while a designer-chosen combination of object side group and image side group is considered. The grouping design process is visualized and steerable. The load of calculation is well controlled in a practical acceptable span. The final eight-mirror design optimized with aspheric parameters achieves an 0.4 numerical aperture on the image side, and the image resolution achieves a diffraction limit with almost no distortion.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
    [Crossref]
  2. H.-J. Mann and W. Ulrich, “Reflective high-NA projection lenses,” Proc. SPIE 5962, 596214 (2005).
    [Crossref]
  3. H.-J. Mann, W. Ultrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent6,710,917 (March23, 2004), p. B2.
  4. T. Takahashi, “Reflection-type projection-optical systems, and exposure apparatus comprising same,” U.S. patent2007/0223119 (Sept.27, 2007), p. A1.
  5. M. F. Bal, “Next-generation extreme ultraviolet lithographic projection,” Ph.D. Thesis (Delft University of Technology, 2003).
  6. O. E. Marinescu, “Novel design methods for high-quality lithographic objectives,” Ph.D. Thesis (Delft University of Technology, 2006).
  7. R. Hudyma, H.-J. Mann, and U. Dinger, “Projection system for EUV lithography,” U.S. patent2007/0153252 (July5, 2007), p. A1.
  8. F. Liu and Y. Li, “Design of multi-mirror optics for industrial extreme ultraviolet lithography,” Opt. Rev. 20(2), 120–126 (2013).
    [Crossref]

2013 (2)

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

F. Liu and Y. Li, “Design of multi-mirror optics for industrial extreme ultraviolet lithography,” Opt. Rev. 20(2), 120–126 (2013).
[Crossref]

2005 (1)

H.-J. Mann and W. Ulrich, “Reflective high-NA projection lenses,” Proc. SPIE 5962, 596214 (2005).
[Crossref]

Bal, M. F.

M. F. Bal, “Next-generation extreme ultraviolet lithographic projection,” Ph.D. Thesis (Delft University of Technology, 2003).

Conradi, O.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

Dinger, U.

R. Hudyma, H.-J. Mann, and U. Dinger, “Projection system for EUV lithography,” U.S. patent2007/0153252 (July5, 2007), p. A1.

Hudyma, R.

R. Hudyma, H.-J. Mann, and U. Dinger, “Projection system for EUV lithography,” U.S. patent2007/0153252 (July5, 2007), p. A1.

Kaiser, W.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

Kuerz, P.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

Li, Y.

F. Liu and Y. Li, “Design of multi-mirror optics for industrial extreme ultraviolet lithography,” Opt. Rev. 20(2), 120–126 (2013).
[Crossref]

Liu, F.

F. Liu and Y. Li, “Design of multi-mirror optics for industrial extreme ultraviolet lithography,” Opt. Rev. 20(2), 120–126 (2013).
[Crossref]

Lowisch, M.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

Mann, H.-J.

H.-J. Mann and W. Ulrich, “Reflective high-NA projection lenses,” Proc. SPIE 5962, 596214 (2005).
[Crossref]

H.-J. Mann, W. Ultrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent6,710,917 (March23, 2004), p. B2.

R. Hudyma, H.-J. Mann, and U. Dinger, “Projection system for EUV lithography,” U.S. patent2007/0153252 (July5, 2007), p. A1.

Marinescu, O. E.

O. E. Marinescu, “Novel design methods for high-quality lithographic objectives,” Ph.D. Thesis (Delft University of Technology, 2006).

Seitz, G.

H.-J. Mann, W. Ultrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent6,710,917 (March23, 2004), p. B2.

Seitz, W.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

Takahashi, T.

T. Takahashi, “Reflection-type projection-optical systems, and exposure apparatus comprising same,” U.S. patent2007/0223119 (Sept.27, 2007), p. A1.

Ulrich, W.

H.-J. Mann and W. Ulrich, “Reflective high-NA projection lenses,” Proc. SPIE 5962, 596214 (2005).
[Crossref]

Ultrich, W.

H.-J. Mann, W. Ultrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent6,710,917 (March23, 2004), p. B2.

Wittich, G.

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

Opt. Rev. (1)

F. Liu and Y. Li, “Design of multi-mirror optics for industrial extreme ultraviolet lithography,” Opt. Rev. 20(2), 120–126 (2013).
[Crossref]

Proc. SPIE (2)

M. Lowisch, P. Kuerz, O. Conradi, G. Wittich, W. Seitz, and W. Kaiser, “Optics for ASML’s NXE:3300B platform,” Proc. SPIE 8679, 86791H (2013).
[Crossref]

H.-J. Mann and W. Ulrich, “Reflective high-NA projection lenses,” Proc. SPIE 5962, 596214 (2005).
[Crossref]

Other (5)

H.-J. Mann, W. Ultrich, and G. Seitz, “8-mirror microlithography projection objective,” U.S. patent6,710,917 (March23, 2004), p. B2.

T. Takahashi, “Reflection-type projection-optical systems, and exposure apparatus comprising same,” U.S. patent2007/0223119 (Sept.27, 2007), p. A1.

M. F. Bal, “Next-generation extreme ultraviolet lithographic projection,” Ph.D. Thesis (Delft University of Technology, 2003).

O. E. Marinescu, “Novel design methods for high-quality lithographic objectives,” Ph.D. Thesis (Delft University of Technology, 2006).

R. Hudyma, H.-J. Mann, and U. Dinger, “Projection system for EUV lithography,” U.S. patent2007/0153252 (July5, 2007), p. A1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Design process of nonobstruction eight-mirror EUVL objectives.

Fig. 2.
Fig. 2.

(a) Calculation of object side group and (b) nonobstruction situation of both object and image side groups.

Fig. 3.
Fig. 3.

Construction of a typical middle-four mirrors group.

Fig. 4.
Fig. 4.

Calculation of the conjugation relationship of M4 and M5.

Fig. 5.
Fig. 5.

SD map of total track 300 mm, M=1/4.

Fig. 6.
Fig. 6.

SD map of total track 600 mm, M=1/4.

Fig. 7.
Fig. 7.

SD map of total track 100mm, M=1/4.

Fig. 8.
Fig. 8.

Examples of the exhaustive search of the middle four-mirror group and layout of connected eight-mirror initial designs.

Fig. 9.
Fig. 9.

(a)–(d) Reasonable procedure of all-sphere initial structure. (e) The optimized aspheric result.

Fig. 10.
Fig. 10.

(a) Object side field setting. (b) Corresponding MTF versus frequency.

Tables (1)

Tables Icon

Table 1. Optical Characteristics of the Eight-Mirror EUVL Objective

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

YOB=YIM/MNAO=NAI·M,
TT=TT1+TT2+TT3.
c1=sin(Ua12arctan((ha1(ha0CL1))/(d1))2)/ha1,
c2=fc2(CL2),
c8=fc8(CL8),
c7=fc7(CL7),
ps2=c3c4+c5c6=(c1c2)(c7c8),
M2=±M/M1/M3,
TT2=l3+d3+d4+d5+l6,
l3=l3/(2c3l31),l4=l3d3,
l6=l6/(2c6l61),l5=l6+d5,
lp3=(lp3+l3)/[2c3(lp3+l3)1]l3,lp4=lp3d3,
lp6=(lp6+l6)/[2c6(lp6+l6)1]l6,lp5=lp6+d5.
Mt=M2/(l6l6·l3l3),
pst=ps2c3+c6=c4+c5,
TTt=TT2(l3)+(l3)l6+l6=(l4)+d4+l5.
T=[T11T12T21T22]=[1TTt+l4d401][102(pst+c4)1][1d401][102c41][1l401]=[Mt001Mt].
P=[P11P21P12P22]=[1TTt+l4d4+lp501][102(pst+c4)1][1d401][102c41][1l4lp401]=[lp5Mtlp400Mtlp4lp5].
{T11=MTT12=0P12=0.
d3=l3l4=l3+Mtlp4lp5(ps2A±pst2A24AB)/A,
c4=12(pst±pst24B/A),
d4=A/(Mtlp5lp4(Mt2lp4+2Mtlp5pstlp4lp5)),
c5=pst+c4,
d5=l5l6=TTt+l4d4l6,
A=Mtlp5lp4(lp4Mt2TTt+Mt2lp5lp4+2Mtlp5lp4lp5lp4+lp5TTt)B=pst2Mt2lp42lp5212Mt2lp5lp4+14Mt4lp42+14lp52.
L<d3<0,0<d4<L,L<d5<0,
DIS1·(M/M1)+DIS2·M3+DIS3=DIS.
(DISlimitDIS1·MM1DIS3)M3<DIS2>(DISlimitDIS1·MM1DIS3)M3.
SD=N40,000.

Metrics