Abstract

This paper proposes a cat-eye effect target recognition method with compressive sensing (CS) and presents a recognition method (sample processing before reconstruction based on compressed sensing, or SPCS) for image processing. In this method, the linear projections of original image sequences are applied to remove dynamic background distractions and extract cat-eye effect targets. Furthermore, the corresponding imaging mechanism for acquiring active and passive image sequences is put forward. This method uses fewer images to recognize cat-eye effect targets, reduces data storage, and translates the traditional target identification, based on original image processing, into measurement vectors processing. The experimental results show that the SPCS method is feasible and superior to the shape-frequency dual criteria method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Ge, Z. Huang, and Y. Ji, “Target classification with ‘cat eye effect’,” High Power Laser Part. Beams 15, 632–634 (2003).
  2. Y. Zhao, H. Sun, X. Yu, and M. Fan, “Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens,” Chin. Phys. Lett. 3, 034101 (2010).
  3. C. Lecocq, G. Deshors, O. Lado-Bordowsky, and J. L. Meyzonnette, “Sight laser detection modeling,” Proc. SPIE 5086, 280–286 (2003).
  4. K. N. Truong, S. N. Patel, J. W. Summet, and G. D. Abowd, “Preventing camera recording by designing a capture-resistant environment,” Lect. Notes Comput. Sci. 3660, 903–916 (2005).
  5. W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
    [CrossRef]
  6. R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
    [CrossRef]
  7. S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
    [CrossRef]
  8. D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5616, 1–15 (2004).
  9. F. E. Pena-Arellano and C. C. Speake, “Mirror tilt immunity interferometry with a cat’s eye retroreflector,” Appl. Opt. 50, 981–991 (2011).
    [CrossRef]
  10. A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
    [CrossRef]
  11. L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).
  12. X. Ren and L. Li, “Recognizing cat-eye targets with dual criterions of shape and modulation frequency,” Chin. Opt. Lett. 9, 1–5 (2011).
  13. V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
    [CrossRef]
  14. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
    [CrossRef]
  15. E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
    [CrossRef]
  16. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [CrossRef]
  17. E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
    [CrossRef]
  18. S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).
    [CrossRef]
  19. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
    [CrossRef]
  20. J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative thresholding algorithm for image restoration,” IEEE Trans. Imag. Process. 16, 2992–3004 (2007).
    [CrossRef]
  21. J. Bioucas-Dias and M. Figueiredo, “Two-step algorithms for linear inverse problems with non-quadratic regularization,” IEEE International Conference on Image Processing (IEEE, 2007), pp. 105–108.
  22. D. Goldfarb and W. Yin, “Second-order cone programming methods for total variation based image restoration,” SIAM J. Sci. Comput. 27, 622–645 (2005).
    [CrossRef]
  23. Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imag. Sci. 1, 248–272 (2008).
    [CrossRef]
  24. C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel,” Camera and Compressive Sensing, Master thesis (Rice University, 2009).
  25. J. Yang and Y. Zhang, “Alternating direction algorithms for L1 problems in compressive sensing,” (2009).

2011

F. E. Pena-Arellano and C. C. Speake, “Mirror tilt immunity interferometry with a cat’s eye retroreflector,” Appl. Opt. 50, 981–991 (2011).
[CrossRef]

X. Ren and L. Li, “Recognizing cat-eye targets with dual criterions of shape and modulation frequency,” Chin. Opt. Lett. 9, 1–5 (2011).

2010

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Y. Zhao, H. Sun, X. Yu, and M. Fan, “Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens,” Chin. Phys. Lett. 3, 034101 (2010).

2009

L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).

2008

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imag. Sci. 1, 248–272 (2008).
[CrossRef]

2007

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative thresholding algorithm for image restoration,” IEEE Trans. Imag. Process. 16, 2992–3004 (2007).
[CrossRef]

2006

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[CrossRef]

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

2005

K. N. Truong, S. N. Patel, J. W. Summet, and G. D. Abowd, “Preventing camera recording by designing a capture-resistant environment,” Lect. Notes Comput. Sci. 3660, 903–916 (2005).

E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[CrossRef]

D. Goldfarb and W. Yin, “Second-order cone programming methods for total variation based image restoration,” SIAM J. Sci. Comput. 27, 622–645 (2005).
[CrossRef]

2004

D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5616, 1–15 (2004).

2003

C. Ge, Z. Huang, and Y. Ji, “Target classification with ‘cat eye effect’,” High Power Laser Part. Beams 15, 632–634 (2003).

C. Lecocq, G. Deshors, O. Lado-Bordowsky, and J. L. Meyzonnette, “Sight laser detection modeling,” Proc. SPIE 5086, 280–286 (2003).

2001

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[CrossRef]

1993

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).
[CrossRef]

Abowd, G. D.

K. N. Truong, S. N. Patel, J. W. Summet, and G. D. Abowd, “Preventing camera recording by designing a capture-resistant environment,” Lect. Notes Comput. Sci. 3660, 903–916 (2005).

Agren, D.

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

Almqvist, S.

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

Andersson, J. Y.

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

Baraniuk, R. G.

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

Binari, S.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Bioucas-Dias, J.

J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative thresholding algorithm for image restoration,” IEEE Trans. Imag. Process. 16, 2992–3004 (2007).
[CrossRef]

J. Bioucas-Dias and M. Figueiredo, “Two-step algorithms for linear inverse problems with non-quadratic regularization,” IEEE International Conference on Image Processing (IEEE, 2007), pp. 105–108.

Burris, H. R.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Candès, E.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[CrossRef]

E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[CrossRef]

Cevher, V.

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

Chellappa, R.

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

Chen, S. S.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[CrossRef]

Deshors, G.

C. Lecocq, G. Deshors, O. Lado-Bordowsky, and J. L. Meyzonnette, “Sight laser detection modeling,” Proc. SPIE 5086, 280–286 (2003).

Donoho, D.

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

Donoho, D. L.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[CrossRef]

Duarte, M. F.

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

Fan, M.

Y. Zhao, H. Sun, X. Yu, and M. Fan, “Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens,” Chin. Phys. Lett. 3, 034101 (2010).

Ferraro, M.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Ferraro, M. S.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

Figueiredo, M.

J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative thresholding algorithm for image restoration,” IEEE Trans. Imag. Process. 16, 2992–3004 (2007).
[CrossRef]

J. Bioucas-Dias and M. Figueiredo, “Two-step algorithms for linear inverse problems with non-quadratic regularization,” IEEE International Conference on Image Processing (IEEE, 2007), pp. 105–108.

Freeman, W. T.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

Ge, C.

C. Ge, Z. Huang, and Y. Ji, “Target classification with ‘cat eye effect’,” High Power Laser Part. Beams 15, 632–634 (2003).

Gilbreath, G. C.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Goetz, P. G.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Goldfarb, D.

D. Goldfarb and W. Yin, “Second-order cone programming methods for total variation based image restoration,” SIAM J. Sci. Comput. 27, 622–645 (2005).
[CrossRef]

Huang, Z.

C. Ge, Z. Huang, and Y. Ji, “Target classification with ‘cat eye effect’,” High Power Laser Part. Beams 15, 632–634 (2003).

Jeppson, K. D.

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Ji, Y.

C. Ge, Z. Huang, and Y. Ji, “Target classification with ‘cat eye effect’,” High Power Laser Part. Beams 15, 632–634 (2003).

Jiang, X.

L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).

Junique, S.

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

Klotzkin, D.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Lado-Bordowsky, O.

C. Lecocq, G. Deshors, O. Lado-Bordowsky, and J. L. Meyzonnette, “Sight laser detection modeling,” Proc. SPIE 5086, 280–286 (2003).

Lecocq, C.

C. Lecocq, G. Deshors, O. Lado-Bordowsky, and J. L. Meyzonnette, “Sight laser detection modeling,” Proc. SPIE 5086, 280–286 (2003).

Li, C.

C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel,” Camera and Compressive Sensing, Master thesis (Rice University, 2009).

Li, L.

X. Ren and L. Li, “Recognizing cat-eye targets with dual criterions of shape and modulation frequency,” Chin. Opt. Lett. 9, 1–5 (2011).

Long, P.

L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).

Mahon, R.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Mallat, S. G.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).
[CrossRef]

Marchant, A. B.

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Meyzonnette, J. L.

C. Lecocq, G. Deshors, O. Lado-Bordowsky, and J. L. Meyzonnette, “Sight laser detection modeling,” Proc. SPIE 5086, 280–286 (2003).

Moore, C. I.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Murphy, J.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Nohret, B.

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

Patel, S. N.

K. N. Truong, S. N. Patel, J. W. Summet, and G. D. Abowd, “Preventing camera recording by designing a capture-resistant environment,” Lect. Notes Comput. Sci. 3660, 903–916 (2005).

Pena-Arellano, F. E.

Plett, M.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

Rabinovich, W. S.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Reddy, D.

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

Ren, X.

X. Ren and L. Li, “Recognizing cat-eye targets with dual criterions of shape and modulation frequency,” Chin. Opt. Lett. 9, 1–5 (2011).

Romberg, J.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

Sankaranarayanan, A.

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

Saunders, M. A.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[CrossRef]

Scott, R. T.

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Song, X.

L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).

Speake, C. C.

Stell, M.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

Suite, M.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Suite, M. R.

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

Summet, J. W.

K. N. Truong, S. N. Patel, J. W. Summet, and G. D. Abowd, “Preventing camera recording by designing a capture-resistant environment,” Lect. Notes Comput. Sci. 3660, 903–916 (2005).

Sun, H.

Y. Zhao, H. Sun, X. Yu, and M. Fan, “Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens,” Chin. Phys. Lett. 3, 034101 (2010).

Swingen, L.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

Tao, T.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[CrossRef]

E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[CrossRef]

Titterton, D. H.

D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5616, 1–15 (2004).

Tong, L.

L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).

Truong, K. N.

K. N. Truong, S. N. Patel, J. W. Summet, and G. D. Abowd, “Preventing camera recording by designing a capture-resistant environment,” Lect. Notes Comput. Sci. 3660, 903–916 (2005).

Wang, Q.

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

Wang, X.

L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).

Wang, Y.

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imag. Sci. 1, 248–272 (2008).
[CrossRef]

Yang, J.

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imag. Sci. 1, 248–272 (2008).
[CrossRef]

J. Yang and Y. Zhang, “Alternating direction algorithms for L1 problems in compressive sensing,” (2009).

Yin, W.

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imag. Sci. 1, 248–272 (2008).
[CrossRef]

D. Goldfarb and W. Yin, “Second-order cone programming methods for total variation based image restoration,” SIAM J. Sci. Comput. 27, 622–645 (2005).
[CrossRef]

Yu, X.

Y. Zhao, H. Sun, X. Yu, and M. Fan, “Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens,” Chin. Phys. Lett. 3, 034101 (2010).

Zhang, Y.

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imag. Sci. 1, 248–272 (2008).
[CrossRef]

J. Yang and Y. Zhang, “Alternating direction algorithms for L1 problems in compressive sensing,” (2009).

Zhang, Z.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).
[CrossRef]

Zhao, Y.

Y. Zhao, H. Sun, X. Yu, and M. Fan, “Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens,” Chin. Phys. Lett. 3, 034101 (2010).

Appl. Opt.

Chin. Opt. Lett.

X. Ren and L. Li, “Recognizing cat-eye targets with dual criterions of shape and modulation frequency,” Chin. Opt. Lett. 9, 1–5 (2011).

Chin. Phys. Lett.

Y. Zhao, H. Sun, X. Yu, and M. Fan, “Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens,” Chin. Phys. Lett. 3, 034101 (2010).

High Power Laser Part. Beams

C. Ge, Z. Huang, and Y. Ji, “Target classification with ‘cat eye effect’,” High Power Laser Part. Beams 15, 632–634 (2003).

IEEE Photon. Technol. Lett.

S. Junique, D. Agren, Q. Wang, B. Nohret, J. Y. Andersson, and S. Almqvist, “A modulating retro-reflector for free-space optical communication,” IEEE Photon. Technol. Lett. 18(1): 85–87 (2006).
[CrossRef]

IEEE Trans. Imag. Process.

J. Bioucas-Dias and M. Figueiredo, “A new TwIST: two-step iterative thresholding algorithm for image restoration,” IEEE Trans. Imag. Process. 16, 2992–3004 (2007).
[CrossRef]

IEEE Trans. Inf. Theory

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

E. Candès and T. Tao, “Near optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).
[CrossRef]

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 4203–4215 (2005).
[CrossRef]

IEEE Trans. Signal Process.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process. 41, 3397–3415 (1993).
[CrossRef]

Laser Infrared (in Chinese)

L. Tong, X. Jiang, X. Song, X. Wang, and P. Long, “Target detection based on laser imaging with ‘cat eye effect’,” Laser Infrared (in Chinese) 39, 982–985 (2009).

Lect. Notes Comput. Sci.

V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa, “Compressive sensing for background subtraction,” Lect. Notes Comput. Sci. 5303, 155–168 (2008).
[CrossRef]

K. N. Truong, S. N. Patel, J. W. Summet, and G. D. Abowd, “Preventing camera recording by designing a capture-resistant environment,” Lect. Notes Comput. Sci. 3660, 903–916 (2005).

Opt. Eng.

W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. R. Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s eye modulating retroreflectors,” Opt. Eng. 46, 104001 (2007).
[CrossRef]

R. Mahon, W. S. Rabinovich, M. Plett, H. R. Burris, M. S. Ferraro, W. T. Freeman, C. I. Moore, J. Murphy, M. Stell, and M. R. Suite, “Interference effects and aperture averaging in retroreflected light,” Opt. Eng. 47, 046002 (2008).
[CrossRef]

A. B. Marchant, K. D. Jeppson, and R. T. Scott, “Conspicuity tape for enhanced laser range finding,” Opt. Eng. 49, 046401 (2010).
[CrossRef]

Proc. SPIE

D. H. Titterton, “A review of the development of optical countermeasures,” Proc. SPIE 5616, 1–15 (2004).

C. Lecocq, G. Deshors, O. Lado-Bordowsky, and J. L. Meyzonnette, “Sight laser detection modeling,” Proc. SPIE 5086, 280–286 (2003).

SIAM J. Imag. Sci.

Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM J. Imag. Sci. 1, 248–272 (2008).
[CrossRef]

SIAM J. Sci. Comput.

D. Goldfarb and W. Yin, “Second-order cone programming methods for total variation based image restoration,” SIAM J. Sci. Comput. 27, 622–645 (2005).
[CrossRef]

SIAM Rev.

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Rev. 43, 129–159 (2001).
[CrossRef]

Other

C. Li, “An efficient algorithm for total variation regularization with applications to the single pixel,” Camera and Compressive Sensing, Master thesis (Rice University, 2009).

J. Yang and Y. Zhang, “Alternating direction algorithms for L1 problems in compressive sensing,” (2009).

J. Bioucas-Dias and M. Figueiredo, “Two-step algorithms for linear inverse problems with non-quadratic regularization,” IEEE International Conference on Image Processing (IEEE, 2007), pp. 105–108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of cat-eye effect targets detection laser imaging system.

Fig. 2.
Fig. 2.

Flowchart of the proposed method.

Fig. 3.
Fig. 3.

Two pairs of active and passive images. The left two images are active images. The right two images are passive images.

Fig. 4.
Fig. 4.

CS-reconstruction images (a) Iave_O, (b) Iave, and (c) Idiff_ave.

Fig. 5.
Fig. 5.

Difference and binary images (a) Isub_1, (b) Isub_2, (c) binary image of Isub_1 with threshold GTH=254.49, and (d) binary image of Isub_2 with threshold GTH=49.73.

Fig. 6.
Fig. 6.

Recognition results of SPCS and SFDC. The first column contains original images. The second column displays target recognition with SPCS. The third column displays target recognition with SFDC. (a) One target with static background at dusk. (b) One target with shaky trees at noon. (c) One target with ambulatory people in the morning. (d) One target with dense fog in the afternoon. (e) One target with snow in the afternoon. (f) Two targets with ambulatory people in the morning. (g) Two targets with shaky trees at night.

Fig. 7.
Fig. 7.

Yave reconstruction with YALL1 at PDFT, YALL1 at PDCT and TVAL3 in two scenes. Upper left is the original image. Running times of YALL1 at PDFT, YALL1 at PDCT and TVAL3 are shown on top of the reconstructed images.

Fig. 8.
Fig. 8.

Relationship between running times and image sampling rate for YALL1 at PDFT, YALL1 at PDCT, and TVAL3 algorithms 8 (a) corresponds to the experimental image in Fig. 7(a) and (b) corresponds to the experimental image in Fig. 7(b).

Fig. 9.
Fig. 9.

Images in three different scenes for testing the running times of SPCS and SFDC. The first row shows active images. The second row shows passive images.

Tables (1)

Tables Icon

Table 1. Running Times of SPCS (using YALL1 at PDFT) and SFDC Methods in Three Scenes

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

f=ψθ=i=1Nθiψi,
y=Φf=Φψθ,
θ^=argminθPs.t.Φ˜θ=y
f=ψθ^,
{I11(xα,yβ),I12(xα,yβ),,Ik1(xα,yβ),Ik2(xα,yβ),α(0,1,,n1),β(0,1,,m1)},
{Ii1(xα,yβ):i1,2P},{Ii2(xα,yβ):i1,2P}.
{Xi1RN:i1,2P},{Xi2RN:i1,2P}.
{Yi1=ΦXi1,i1,2P},{Yi2=ΦXi2,i1,2P},
{Y1=Y11Y12,Y2=(Y12Y21),Y3=Y21Y22,,Y2P2=(YP1,2YP1),Y2P1=YP1YP2},
Yi(i1,2,3):{Y1=Y11Y12,Y2=Y21Y12,Y3=Y21Y22}.
Yave_O=1Pi=1PY2i1
Yave=12P1i=12P1Yi.
Ydiff_ave=YaveYave_O,
minXiDiXps.t.ΦX=Y,
Isub_1=Iave_OIdiff_ave,
Isub_2=IaveIdiff_ave,

Metrics