Abstract

To investigate the relatively unexplored 1.2 μm region, we identified a near-infrared emission at around 1.23 μm from Er3+/Pr3+-codoped water-free fluorotellurite glass with a composition of 60TeO2-30ZnF2-10NaF (TZNF60, mol. %). Under the condition of pumping with the 488 nm optical parametric oscillator (OPO) laser system, the directly measured lifetime (τf) at 1.23 μm in Er/Pr-codoped fluorotellurite glasses is about 111.2 μs, much longer than that of Er-doped fluorotellurite glass (80.1 μs). The stimulated emission cross section (σem) and quantum efficiency (η) for Er3+:S43/2I411/2 transition are greatly enhanced when appropriate Pr3+ ions are incorporated. These advances arise partially from the absence of the hydroxyl (OH) group and low phonon energy with the addition of a large amount of fluorides into oxide-based host glasses. With high quantum efficiency (56.2%) and a large stimulated cross section (4.03×1021cm2), Er3+/Pr3+-codoped TZNF60 glass is regarded as promising material for the development of optical amplification and laser operation at the relatively unexplored 1.2 μm region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ohishi, “Ultra-broadband optical amplifiers for WDM,” Proc. SPIE 5246, 163–173 (2003).
    [CrossRef]
  2. S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5, 815–824 (2002).
    [CrossRef]
  3. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
    [CrossRef]
  4. P. Laperle, A. Chandonnet, and R. Vallée, “Photoinduced absorption in thulium-doped ZBLAN fibers,” Opt. Lett. 20, 2484–2486 (1995).
    [CrossRef]
  5. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
    [CrossRef]
  6. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47  μm,” Appl. Opt. 39, 4979–4984 (2000).
    [CrossRef]
  7. M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
    [CrossRef]
  8. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
    [CrossRef]
  9. Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47  μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99, 076107 (2006).
    [CrossRef]
  10. B. Zhou, H. Lin, and E. Y. B. Pun, “Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20  μm wavelength region,” Opt. Express 18, 18805–18810 (2010).
    [CrossRef]
  11. E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26, 1696–1701 (2008).
    [CrossRef]
  12. T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
    [CrossRef]
  13. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310  nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).
    [CrossRef]
  14. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116, 1040–1051 (2008).
    [CrossRef]
  15. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
    [CrossRef]
  16. B. D. O. Richards, A. Jha, G. Jose, and X. Jiang, “Oxide glasses for mid-infrared lasers,” Proc. SPIE 8039, 80390R (2011).
    [CrossRef]
  17. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Sigel, “Pr3+-doped fluoride fiber amplifier operating at 1.31  μm,” Opt. Lett. 16, 1747–1749 (1991).
    [CrossRef]
  18. Y. Fujimoto, H. Matsubara, and M. Nakatsuka, “New fluorescence from Bi-doped silica glass and its 1.3-μm emission with 0.8-μm excitation for fiber amplifier,” in Technical Digest of the CLEO/PR01 (IEEE, 2001), pp. 462–463.
  19. B. Zhou, L. Tao, Y. H. Tsang, W. Jin, and E. Y. B. Pun, “Superbroadband near-infrared emission and energy transfer in Pr3+-Er3+ codoped fluorotellurite glasses,” Opt. Express 20, 12205–12211 (2012).
    [CrossRef]
  20. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett. 36, 740–742 (2011).
    [CrossRef]
  21. H. Zhan, Z. Zhou, J. He, and A. Lin, “Intense 2.7  μm emission of Er3+-doped water-free fluorotellurite glass,” Opt. Lett. 37, 3408–3410 (2012).
    [CrossRef]
  22. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17, 16716–16721 (2009).
    [CrossRef]
  23. S. Tanabe, “Optical transitions of rare earth ions for amplifiers: how the local structure works in glass,” J. Non-Cryst. Solids 259, 1–9 (1999).
    [CrossRef]
  24. D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
    [CrossRef]
  25. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7  μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
    [CrossRef]
  26. J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
    [CrossRef]
  27. S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
    [CrossRef]

2012 (3)

2011 (3)

2010 (1)

2009 (1)

2008 (3)

2006 (4)

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47  μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99, 076107 (2006).
[CrossRef]

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
[CrossRef]

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

2005 (3)

D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
[CrossRef]

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310  nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30, 2433–2435 (2005).
[CrossRef]

2003 (1)

Y. Ohishi, “Ultra-broadband optical amplifiers for WDM,” Proc. SPIE 5246, 163–173 (2003).
[CrossRef]

2002 (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5, 815–824 (2002).
[CrossRef]

2000 (2)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47  μm,” Appl. Opt. 39, 4979–4984 (2000).
[CrossRef]

1999 (1)

S. Tanabe, “Optical transitions of rare earth ions for amplifiers: how the local structure works in glass,” J. Non-Cryst. Solids 259, 1–9 (1999).
[CrossRef]

1995 (1)

1991 (1)

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Bélanger, E.

Bernier, M.

Binks, D.

Brown, R. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Bushong, E. J.

Chandonnet, A.

Chen, D.

Chen, D. D.

D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
[CrossRef]

Chen, W.

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47  μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99, 076107 (2006).
[CrossRef]

Côté, D.

Dai, S.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

Deng, Z. D.

D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
[CrossRef]

Drexhage, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Driesen, K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
[CrossRef]

Faucher, D.

Fujimoto, Y.

Y. Fujimoto, H. Matsubara, and M. Nakatsuka, “New fluorescence from Bi-doped silica glass and its 1.3-μm emission with 0.8-μm excitation for fiber amplifier,” in Technical Digest of the CLEO/PR01 (IEEE, 2001), pp. 462–463.

Görller-Walrand, C.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
[CrossRef]

He, J.

Heo, J.

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

Hu, L.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7  μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[CrossRef]

Jain, H.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
[CrossRef]

Jha, A.

B. D. O. Richards, A. Jha, G. Jose, and X. Jiang, “Oxide glasses for mid-infrared lasers,” Proc. SPIE 8039, 80390R (2011).
[CrossRef]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33, 1282–1284 (2008).
[CrossRef]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47  μm,” Appl. Opt. 39, 4979–4984 (2000).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Jiang, X.

B. D. O. Richards, A. Jha, G. Jose, and X. Jiang, “Oxide glasses for mid-infrared lasers,” Proc. SPIE 8039, 80390R (2011).
[CrossRef]

Jiang, Z. H.

D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
[CrossRef]

Jin, W.

Jose, G.

B. D. O. Richards, A. Jha, G. Jose, and X. Jiang, “Oxide glasses for mid-infrared lasers,” Proc. SPIE 8039, 80390R (2011).
[CrossRef]

Kanamori, T.

Kiang, K.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
[CrossRef]

Kitagawa, T.

Laperle, P.

Lee, T. H.

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

Lin, A.

Lin, H.

Liu, Y. H.

D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
[CrossRef]

Lousteau, J.

Luo, L.

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47  μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99, 076107 (2006).
[CrossRef]

Matsubara, H.

Y. Fujimoto, H. Matsubara, and M. Nakatsuka, “New fluorescence from Bi-doped silica glass and its 1.3-μm emission with 0.8-μm excitation for fiber amplifier,” in Technical Digest of the CLEO/PR01 (IEEE, 2001), pp. 462–463.

Meng, X.

Mori, A.

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116, 1040–1051 (2008).
[CrossRef]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47  μm,” Appl. Opt. 39, 4979–4984 (2000).
[CrossRef]

Nakatsuka, M.

Y. Fujimoto, H. Matsubara, and M. Nakatsuka, “New fluorescence from Bi-doped silica glass and its 1.3-μm emission with 0.8-μm excitation for fiber amplifier,” in Technical Digest of the CLEO/PR01 (IEEE, 2001), pp. 462–463.

Ohishi, Y.

Pattnaik, R. K.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
[CrossRef]

Peng, M.

Prasad, S.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
[CrossRef]

Pun, E. Y. B.

Qiu, J.

Richards, B.

Richards, B. D. O.

B. D. O. Richards, A. Jha, G. Jose, and X. Jiang, “Oxide glasses for mid-infrared lasers,” Proc. SPIE 8039, 80390R (2011).
[CrossRef]

Rodriguez, V. D.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
[CrossRef]

Ryasnyanskiy, A.

Seddon, A. B.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
[CrossRef]

Shen, S.

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47  μm,” Appl. Opt. 39, 4979–4984 (2000).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Sigel, G. H.

Snitzer, E.

Takahashi, S.

Tanabe, S.

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5, 815–824 (2002).
[CrossRef]

S. Tanabe, “Optical transitions of rare earth ions for amplifiers: how the local structure works in glass,” J. Non-Cryst. Solids 259, 1–9 (1999).
[CrossRef]

Tao, L.

Tian, Y.

Tikhomirov, V. K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
[CrossRef]

Toulouse, J.

Tsang, Y.

Tsang, Y. H.

Vallée, R.

Wang, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

Wang, J.

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
[CrossRef]

Xu, R.

Yang, Z.

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47  μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99, 076107 (2006).
[CrossRef]

Yu, C.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

Zhan, H.

Zhang, A.

Zhang, J.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7  μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36, 109–111 (2011).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

Zhang, L.

Zhang, Q. Y.

D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
[CrossRef]

Zhou, B.

Zhou, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

Zhou, Z.

Zhu, C.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88, 073111 (2006).
[CrossRef]

C. R. Chim. (1)

S. Tanabe, “Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication,” C. R. Chim. 5, 815–824 (2002).
[CrossRef]

J. Appl. Phys. (2)

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47  μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99, 076107 (2006).
[CrossRef]

T. H. Lee and J. Heo, “1.6  μm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98, 113510 (2005).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116, 1040–1051 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117, 39–45 (2006).
[CrossRef]

J. Non-Cryst. Solids (2)

J. Wang, S. Prasad, K. Kiang, R. K. Pattnaik, J. Toulouse, and H. Jain, “Source of optical loss in tellurite glass fibers,” J. Non-Cryst. Solids 352, 510–513 (2006).
[CrossRef]

S. Tanabe, “Optical transitions of rare earth ions for amplifiers: how the local structure works in glass,” J. Non-Cryst. Solids 259, 1–9 (1999).
[CrossRef]

Mater. Chem. Phys. (1)

D. D. Chen, Y. H. Liu, Q. Y. Zhang, Z. D. Deng, and Z. H. Jiang, “Thermal stability and spectroscopic properties of Er3+-doped niobium tellurite glasses for broadband amplifiers,” Mater. Chem. Phys. 90, 78–82 (2005).
[CrossRef]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6, 423–431 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

Phys. Rev. B (2)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000).
[CrossRef]

M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Proc. SPIE (2)

Y. Ohishi, “Ultra-broadband optical amplifiers for WDM,” Proc. SPIE 5246, 163–173 (2003).
[CrossRef]

B. D. O. Richards, A. Jha, G. Jose, and X. Jiang, “Oxide glasses for mid-infrared lasers,” Proc. SPIE 8039, 80390R (2011).
[CrossRef]

Other (1)

Y. Fujimoto, H. Matsubara, and M. Nakatsuka, “New fluorescence from Bi-doped silica glass and its 1.3-μm emission with 0.8-μm excitation for fiber amplifier,” in Technical Digest of the CLEO/PR01 (IEEE, 2001), pp. 462–463.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Contrast between (a) transparent 1.00Er/0.125Pr-TZNF60 glass and (b) opaque 1.00Er/0.25Pr-TZNF60 glasses. (Black “+” symbol under these samples is the background cross).

Fig. 2.
Fig. 2.

(a) DSC traces. (b) Wavelength dependence of refractive index n for 1.00Er/0.125Pr-TZNF60 glass.

Fig. 3.
Fig. 3.

(a) Absorption spectra of 1.00Er- and 1.00Er/0.125Pr-TZNF60 glass samples. (b) Schematic energy level diagram of Er/Pr-TZNF60 glass.

Fig. 4.
Fig. 4.

(a) 1.23 μm emission spectra. (b) Fluorescence decay curve of the S43/2I411/2 transition of 1.00Er-doped and 1.00Er/0.125Pr-codoped TZNF60 glasses.

Fig. 5.
Fig. 5.

1.53 μm emission spectra for 1.00Er3+-doped and 1.00Er3+/0.125Pr3+-codoped TZNF60 glasses under 488 nm excitation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σem(λ)=Aradλ5I(λ)8πcn2λI(λ)dλ,

Metrics