Abstract

To investigate the relatively unexplored 1.2 μm region, we identified a near-infrared emission at around 1.23 μm from Er3+/Pr3+-codoped water-free fluorotellurite glass with a composition of 60TeO2-30ZnF2-10NaF (TZNF60, mol. %). Under the condition of pumping with the 488 nm optical parametric oscillator (OPO) laser system, the directly measured lifetime (τf) at 1.23 μm in Er/Pr-codoped fluorotellurite glasses is about 111.2 μs, much longer than that of Er-doped fluorotellurite glass (80.1 μs). The stimulated emission cross section (σem) and quantum efficiency (η) for Er3+:S43/2I411/2 transition are greatly enhanced when appropriate Pr3+ ions are incorporated. These advances arise partially from the absence of the hydroxyl (OH) group and low phonon energy with the addition of a large amount of fluorides into oxide-based host glasses. With high quantum efficiency (56.2%) and a large stimulated cross section (4.03×1021cm2), Er3+/Pr3+-codoped TZNF60 glass is regarded as promising material for the development of optical amplification and laser operation at the relatively unexplored 1.2 μm region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription