M. Pisarenco, J. M. L. Maubach, I. D. Setija, and R. M. M. Mattheij, “Efficient solution of Maxwell’s equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method,” J. Comput. Phys. 231, 8209–8228 (2012).

[CrossRef]

P. Török, P. R. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23, 713–722 (2006).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput. 7, 477–485 (2000).

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antennas Propag. 47, 566–573 (1999).

[CrossRef]

A. Taaghol and T. K. Sarkar, “Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current,” IEEE Trans. Electromag. Compat. 38, 536–542 (1996).

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, “Fast and accurate near-field-far-field transformation by sampling interpolation of plane-polar measurements,” IEEE Trans. Antennas Propag. 39, 48–55 (1991).

[CrossRef]

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I—Theory,” IEEE Trans. Antennas Propag. 38, 335–344 (1990).

[CrossRef]

C. W. Clenshaw and A. R. Curtis, “A method for numerical integration on an automatic computer,” Numer. Math. 2, 197–205 (1960).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, “Fast and accurate near-field-far-field transformation by sampling interpolation of plane-polar measurements,” IEEE Trans. Antennas Propag. 39, 48–55 (1991).

[CrossRef]

C. W. Clenshaw and A. R. Curtis, “A method for numerical integration on an automatic computer,” Numer. Math. 2, 197–205 (1960).

[CrossRef]

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput. 7, 477–485 (2000).

R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, 1953).

C. W. Clenshaw and A. R. Curtis, “A method for numerical integration on an automatic computer,” Numer. Math. 2, 197–205 (1960).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, “Fast and accurate near-field-far-field transformation by sampling interpolation of plane-polar measurements,” IEEE Trans. Antennas Propag. 39, 48–55 (1991).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, 1953).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1990).

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput. 7, 477–485 (2000).

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Modified S-matrix algorithm for the aperiodic Fourier modal method in contrast-field formulation,” J. Opt. Soc. Am. A 28, 1364–1371 (2011).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).

[CrossRef]

M. Pisarenco, J. M. L. Maubach, I. D. Setija, and R. M. M. Mattheij, “Efficient solution of Maxwell’s equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method,” J. Comput. Phys. 231, 8209–8228 (2012).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Modified S-matrix algorithm for the aperiodic Fourier modal method in contrast-field formulation,” J. Opt. Soc. Am. A 28, 1364–1371 (2011).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).

[CrossRef]

M. Pisarenco, J. M. L. Maubach, I. D. Setija, and R. M. M. Mattheij, “Efficient solution of Maxwell’s equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method,” J. Comput. Phys. 231, 8209–8228 (2012).

[CrossRef]

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I—Theory,” IEEE Trans. Antennas Propag. 38, 335–344 (1990).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995).

[CrossRef]

M. Pisarenco, J. M. L. Maubach, I. D. Setija, and R. M. M. Mattheij, “Efficient solution of Maxwell’s equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method,” J. Comput. Phys. 231, 8209–8228 (2012).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Modified S-matrix algorithm for the aperiodic Fourier modal method in contrast-field formulation,” J. Opt. Soc. Am. A 28, 1364–1371 (2011).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).

[CrossRef]

M. Pisarenco, “Scattering from finite structures: an extended Fourier modal method,” Ph.D. thesis (Eindhoven University of Technology, 2011).

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995).

[CrossRef]

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antennas Propag. 47, 566–573 (1999).

[CrossRef]

A. Taaghol and T. K. Sarkar, “Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current,” IEEE Trans. Electromag. Compat. 38, 536–542 (1996).

O. M. Bucci, C. Gennarelli, and C. Savarese, “Fast and accurate near-field-far-field transformation by sampling interpolation of plane-polar measurements,” IEEE Trans. Antennas Propag. 39, 48–55 (1991).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Modified S-matrix algorithm for the aperiodic Fourier modal method in contrast-field formulation,” J. Opt. Soc. Am. A 28, 1364–1371 (2011).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).

[CrossRef]

M. Pisarenco, J. M. L. Maubach, I. D. Setija, and R. M. M. Mattheij, “Efficient solution of Maxwell’s equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method,” J. Comput. Phys. 231, 8209–8228 (2012).

[CrossRef]

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antennas Propag. 47, 566–573 (1999).

[CrossRef]

A. Taaghol and T. K. Sarkar, “Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current,” IEEE Trans. Electromag. Compat. 38, 536–542 (1996).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995).

[CrossRef]

J. R. Wait, Electromagnetic Waves in Stratified Media (IEEE/OUP Series on Electromagnetic Wave Theory) (Oxford University, 1996).

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I—Theory,” IEEE Trans. Antennas Propag. 38, 335–344 (1990).

[CrossRef]

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media. I—Theory,” IEEE Trans. Antennas Propag. 38, 335–344 (1990).

[CrossRef]

O. M. Bucci, C. Gennarelli, and C. Savarese, “Fast and accurate near-field-far-field transformation by sampling interpolation of plane-polar measurements,” IEEE Trans. Antennas Propag. 39, 48–55 (1991).

[CrossRef]

T. K. Sarkar and A. Taaghol, “Near-field to near/far-field transformation for arbitrary near-field geometry utilizing an equivalent electric current and MoM,” IEEE Trans. Antennas Propag. 47, 566–573 (1999).

[CrossRef]

A. Taaghol and T. K. Sarkar, “Near-field to near/far-field transformation for arbitrary near-field geometry, utilizing an equivalent magnetic current,” IEEE Trans. Electromag. Compat. 38, 536–542 (1996).

R. Cools and K. Kim, “A survey of known and new cubature formulas for the unit disk,” J. Appl. Math. Comput. 7, 477–485 (2000).

M. Pisarenco, J. M. L. Maubach, I. D. Setija, and R. M. M. Mattheij, “Efficient solution of Maxwell’s equations for geometries with repeating patterns by an exchange of discretization directions in the aperiodic Fourier modal method,” J. Comput. Phys. 231, 8209–8228 (2012).

[CrossRef]

J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).

[CrossRef]

J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005).

[CrossRef]

P. Török, P. R. Munro, and E. E. Kriezis, “Rigorous near- to far-field transformation for vectorial diffraction calculations and its numerical implementation,” J. Opt. Soc. Am. A 23, 713–722 (2006).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010).

[CrossRef]

M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Modified S-matrix algorithm for the aperiodic Fourier modal method in contrast-field formulation,” J. Opt. Soc. Am. A 28, 1364–1371 (2011).

[CrossRef]

C. W. Clenshaw and A. R. Curtis, “A method for numerical integration on an automatic computer,” Numer. Math. 2, 197–205 (1960).

[CrossRef]

J. Saarinen, E. Noponen, and J. P. Turunen, “Guided-mode resonance filters of finite aperture,” Opt. Eng. 34, 2560–2566 (1995).

[CrossRef]

A. David, H. Benisty, and C. Weisbuch, “Fast factorization rule and plane-wave expansion method for two-dimensional photonic crystals with arbitrary hole-shape,” Phys. Rev. B 73, 075107 (2006).

[CrossRef]

G. Bao, L. Cowsar, and W. Masters, eds., Mathematical Modeling in Optical Science (Frontiers in Applied Mathematics) (Society for Industrial Mathematics, 2001).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

M. Pisarenco, “Scattering from finite structures: an extended Fourier modal method,” Ph.D. thesis (Eindhoven University of Technology, 2011).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice-Hall, 1990).

R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, 1953).

J. R. Wait, Electromagnetic Waves in Stratified Media (IEEE/OUP Series on Electromagnetic Wave Theory) (Oxford University, 1996).