Abstract

In conventional multichannel imaging systems, all channels have similar imaging properties [field-of-view (FOV) and angular resolution]. In our approach, channels are designed to have different imaging properties which add multiresolution capability to the system. We have experimentally demonstrated, for the first time to our knowledge, a three-channel imaging system which simultaneously captures multiple images having different magnifications and FOVs on an image sensor. Each channel consists of four aspherical lens surfaces fabricated from four PMMA plates by ultraprecision diamond tooling and of a baffle made from a titanium (Ti) and aluminum (Al) based metal alloy. The integrated imaging system is able to record a FOV of 7.6° with the first channel and 73° with the third channel while having a magnification ratio of about 6 between them. The experimental and simulation results, specifically the FOV and magnification ratios, are comparable, and this paves a way for low-cost, compact imaging systems which can embed smart imaging functionalities.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [CrossRef]
  2. J. Duparré and F. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1R1–R16 (2006).
    [CrossRef]
  3. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
    [CrossRef]
  4. E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
    [CrossRef]
  5. L. Li and A. Y. Yi, “Development of a 3D artificial compound eye,” Opt. Express 18, 18125–18137 (2010).
    [CrossRef]
  6. J. Duparré and R. Völkel, “Novel optics/micro-optics for miniature imaging,” Proc. SPIE 6196, 619607 (2006).
    [CrossRef]
  7. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
    [CrossRef]
  8. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
    [CrossRef]
  9. G. Y. Belay, Y. Meuret, H. Ottevaere, P. Veelaert, and H. Thienpont, “Design of a multichannel, multiresolution smart imaging system,” Appl. Opt. 51, 4810–4817 (2012).
    [CrossRef]
  10. “Werth Chromatic Focus Probe CFP,” http://www.werth.de/en/unser-angebot/products/sensors/werth-chromatic-focus-probe-cfp.html .
  11. R. Fischer, Optical System Design (McGraw-Hill, 2000).
  12. G. W. Forbes, “Manufacturability estimates for optical aspheres,” Opt. Express 19, 9923–9941 (2011).
    [CrossRef]
  13. “R3L3S1N - Negative 1951 USAF Test Target, 3″ × 3″,” http://www.thorlabs.de/thorproduct.cfm?partnumber=R3L3S1N .
  14. “EO-0413M 1/3” CMOS Monochrome USB Camera,” http://www.edmundoptics.com/imaging/cameras/usb-cameras/eo-usb-2-0-cmos-machine-vision-cameras/593630 .
  15. “Nikon imaging productsEscofet,” http://imaging.nikon.com/lineup/dslr/d1 .
  16. P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis” in Proceedings of the IS&T 2000 PICS Conference (IS&T, 2000), pp. 135–138.
  17. C. Mitjà, J. Escofet, A. Tacho, and R. Revuelta, “Slanted Edge MTF,” http://rsb.info.nih.gov/ij/plugins/se-mtf/index.html .
  18. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to Image J: 25 years of image analysis,” Nat. Methods 9, 671–675 (2012).
    [CrossRef]

2013

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

2012

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to Image J: 25 years of image analysis,” Nat. Methods 9, 671–675 (2012).
[CrossRef]

G. Y. Belay, Y. Meuret, H. Ottevaere, P. Veelaert, and H. Thienpont, “Design of a multichannel, multiresolution smart imaging system,” Appl. Opt. 51, 4810–4817 (2012).
[CrossRef]

2011

2010

2006

J. Duparré and R. Völkel, “Novel optics/micro-optics for miniature imaging,” Proc. SPIE 6196, 619607 (2006).
[CrossRef]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

J. Duparré and F. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1R1–R16 (2006).
[CrossRef]

Belay, G. Y.

Brady, D. J.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Bräuer, A.

Brückner, A.

Burns, P. D.

P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis” in Proceedings of the IS&T 2000 PICS Conference (IS&T, 2000), pp. 135–138.

Choi, K. J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Dannberg, P.

Duparré, J.

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
[CrossRef]

J. Duparré and R. Völkel, “Novel optics/micro-optics for miniature imaging,” Proc. SPIE 6196, 619607 (2006).
[CrossRef]

J. Duparré and F. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1R1–R16 (2006).
[CrossRef]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to Image J: 25 years of image analysis,” Nat. Methods 9, 671–675 (2012).
[CrossRef]

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Fischer, R.

R. Fischer, Optical System Design (McGraw-Hill, 2000).

Forbes, G. W.

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Kim, R. H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Leitel, R.

Li, L.

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Marks, D. L.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Merken, P.

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

Meuret, Y.

G. Y. Belay, Y. Meuret, H. Ottevaere, P. Veelaert, and H. Thienpont, “Design of a multichannel, multiresolution smart imaging system,” Appl. Opt. 51, 4810–4817 (2012).
[CrossRef]

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

Moens, E.

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

Ottevaere, H.

G. Y. Belay, Y. Meuret, H. Ottevaere, P. Veelaert, and H. Thienpont, “Design of a multichannel, multiresolution smart imaging system,” Appl. Opt. 51, 4810–4817 (2012).
[CrossRef]

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to Image J: 25 years of image analysis,” Nat. Methods 9, 671–675 (2012).
[CrossRef]

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Sarkar, M.

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to Image J: 25 years of image analysis,” Nat. Methods 9, 671–675 (2012).
[CrossRef]

Segundo Bello, D. S.

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Stack, R. A.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Thienpont, H.

G. Y. Belay, Y. Meuret, H. Ottevaere, P. Veelaert, and H. Thienpont, “Design of a multichannel, multiresolution smart imaging system,” Appl. Opt. 51, 4810–4817 (2012).
[CrossRef]

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

Tünnermann, A.

Veelaert, P.

Vera, E. M.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Völkel, R.

J. Duparré and R. Völkel, “Novel optics/micro-optics for miniature imaging,” Proc. SPIE 6196, 619607 (2006).
[CrossRef]

Wippermann, F.

J. Duparré and F. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1R1–R16 (2006).
[CrossRef]

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

Yi, A. Y.

Appl. Opt.

Bioinsp. Biomim.

J. Duparré and F. Wippermann, “Micro-optical artificial compound eyes,” Bioinsp. Biomim. 1R1–R16 (2006).
[CrossRef]

Nat. Methods

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to Image J: 25 years of image analysis,” Nat. Methods 9, 671–675 (2012).
[CrossRef]

Nature

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497, 95–99 (2013).
[CrossRef]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature 486, 386–389 (2012).
[CrossRef]

Opt. Express

Proc. SPIE

E. Moens, Y. Meuret, H. Ottevaere, M. Sarkar, D. S. Segundo Bello, P. Merken, and H. Thienpont, “An insect eye based image sensor with very large field-of-view,” Proc. SPIE 7716, 77162D (2010).
[CrossRef]

J. Duparré and R. Völkel, “Novel optics/micro-optics for miniature imaging,” Proc. SPIE 6196, 619607 (2006).
[CrossRef]

Science

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef]

Other

“Werth Chromatic Focus Probe CFP,” http://www.werth.de/en/unser-angebot/products/sensors/werth-chromatic-focus-probe-cfp.html .

R. Fischer, Optical System Design (McGraw-Hill, 2000).

“R3L3S1N - Negative 1951 USAF Test Target, 3″ × 3″,” http://www.thorlabs.de/thorproduct.cfm?partnumber=R3L3S1N .

“EO-0413M 1/3” CMOS Monochrome USB Camera,” http://www.edmundoptics.com/imaging/cameras/usb-cameras/eo-usb-2-0-cmos-machine-vision-cameras/593630 .

“Nikon imaging productsEscofet,” http://imaging.nikon.com/lineup/dslr/d1 .

P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis” in Proceedings of the IS&T 2000 PICS Conference (IS&T, 2000), pp. 135–138.

C. Mitjà, J. Escofet, A. Tacho, and R. Revuelta, “Slanted Edge MTF,” http://rsb.info.nih.gov/ij/plugins/se-mtf/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Design of a three-channel, multiresolution imaging system. (b) Image sensor division among the three channels [9].

Fig. 2.
Fig. 2.

Fabricated lens surfaces, aperture stops, and baffles of the three channels: (a) the four fabricated lens surface arrays, (b) three lens surfaces exist in each lens surface array where the left lens has a diameter of 10 mm, the top right of 5 mm, and the bottom right of 5 mm.

Fig. 3.
Fig. 3.

Fabricated lens surfaces fitted with 10th order polynomial functions. Profiles of both fitted and designed lens surfaces (left) and difference between the fitted and designed lens surfaces (right); (a) S14 and (b) S34.

Fig. 4.
Fig. 4.

MTF of nominal design and realistic model with the fabricated lens surfaces: (a) the first channel, (b) the second channel, and (c) the third channel.

Fig. 5.
Fig. 5.

(a) Integrated imaging system. (b) Components of the assembled optical system.

Fig. 6.
Fig. 6.

Setup of the experimental proof-of-concept demonstration.

Fig. 7.
Fig. 7.

(a) Imaging properties of the three channels for (a) a picture of three penguins used as an object to be imaged; image captured by (b) the first channel, (c) the second channel, and (d) the third channel.

Fig. 8.
Fig. 8.

Image quality of the complete imaging system: comparison of the experimental and simulated images, respectively, of (a) an object (a picture with three penguins) located 2 m away, captured by (b), (b’) the first channel, (c), (c’) second channel, and (d), (d’) third channel.

Fig. 9.
Fig. 9.

Experimental MTF together with the MTFs of the nominal design and realistic model with fabricated lens surfaces for (a) the first channel, (b) the second channel, and (c) the third channel.

Tables (3)

Tables Icon

Table 1. Comparison of the ROCs (in mm) of the Designed and Fabricated Lens Surfaces

Tables Icon

Table 2. Comparison of the Experimental and Simulated FOVs of the Three Channels with Their Experimental Depths of Field

Tables Icon

Table 3. Images Captured by the First, Second, and Third Channels at Different Object Distances

Metrics