Abstract

It is demonstrated by numerical modeling that spectrally dispersed compound pumping diodes and low-loss pumping chamber reduced the temperature dependence of the output energy of quasi-continuous wave diode-pumped Nd:YAG lasers considerably. Several compound diodes with different spectral profiles were tested for pumping. The laser energy was calculated as a function of diode temperature from 30°C to 60°C. When a compound diode with a flat-top spectrum was used for pumping, the mean laser energy was 83% of the maximum energy of a Nd:YAG laser pumped by a diode with a narrow bandwidth. In addition, a compound diode with three emission lines was tested for pumping. When the wavelength gap between the adjacent emission lines of the pumping diode was in the range of 3–10 nm, the mean energy of the Nd:YAG laser became similar to that of a Nd:YAG laser pumped by a diode with a flat-top spectrum.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription