Abstract

A tunable all-optical single-bandpass photonic microwave filter (PMF) based on spectrally sliced broadband optical source and phase modulation is proposed and experimentally demonstrated. A broadband optical source and a Mach–Zehnder interferometer (MZI) are used to generate continuous optical spectral samples, which are employed to form a finite impulse response filter with a single-bandpass response with the help of a single-mode fiber. A phase modulator is then adopted to eliminate the baseband components in the filtering response. The center frequency of the PMF can be tuned by changing the free spectral range of the MZI. An experiment is performed, and the results demonstrate that the proposed PMF has a single-bandpass without baseband components and a tuning range of 5–15 GHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  3. B. Vidal, J. L. Corral, and J. Martí, “Optical delay line employing an arrayed waveguide grating in fold-back configuration,” IEEE Microw. Wirel. Compon. Lett. 13, 238–240 (2003).
    [CrossRef]
  4. C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol. 28, 262–269 (2010).
    [CrossRef]
  5. E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter,” J. Lightwave Technol. 28, 2358–2365 (2010).
    [CrossRef]
  6. L. N. Zhou, Y. J. Cheng, and E. M. Xu, “Coherence-free cascade IIR microwave photonic filter with high Q factor,” Electron. Lett. 47, 754–755 (2011).
    [CrossRef]
  7. Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
    [CrossRef]
  8. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
    [CrossRef]
  9. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach–Zehnder interferometer,” J. Lightwave Technol. 24, 2500–2509 (2006).
    [CrossRef]
  10. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32, 23–25 (2007).
    [CrossRef]
  11. X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 362–363 (2009).
    [CrossRef]
  12. T. X. H. Huang, X. Yi, L. W. Li, and R. A. Minasian, “Single passband microwave photonic signal processor based on a multi-channel chirped fiber Bragg grating,” in Proceedings of the International Topical Meeting on & Microwave Photonic Conference (IEEE, 2011), pp. 389–392.
  13. F. Zenga and J. P. Yao, “Investigation of phase-modulator-based all-optical bandpass microwave filter,” J. Lightwave Technol. 23, 1721–1728 (2005).
    [CrossRef]
  14. G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216(1984).
    [CrossRef]
  15. X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filers,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
    [CrossRef]
  16. X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol. 24, 4959–4965 (2006).
    [CrossRef]
  17. M. Song, V. T. Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photonics Technol. Lett. 24, 1236–1238 (2012).
    [CrossRef]

2012

M. Song, V. T. Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photonics Technol. Lett. 24, 1236–1238 (2012).
[CrossRef]

2011

L. N. Zhou, Y. J. Cheng, and E. M. Xu, “Coherence-free cascade IIR microwave photonic filter with high Q factor,” Electron. Lett. 47, 754–755 (2011).
[CrossRef]

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

2010

2009

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 362–363 (2009).
[CrossRef]

2007

2006

2005

2003

B. Vidal, J. L. Corral, and J. Martí, “Optical delay line employing an arrayed waveguide grating in fold-back configuration,” IEEE Microw. Wirel. Compon. Lett. 13, 238–240 (2003).
[CrossRef]

1984

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216(1984).
[CrossRef]

Andrés, M. V.

Capmany, J.

Chan, E. H. W.

Cheng, Y. J.

L. N. Zhou, Y. J. Cheng, and E. M. Xu, “Coherence-free cascade IIR microwave photonic filter with high Q factor,” Electron. Lett. 47, 754–755 (2011).
[CrossRef]

Company, V. T.

M. Song, V. T. Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photonics Technol. Lett. 24, 1236–1238 (2012).
[CrossRef]

Corral, J. L.

B. Vidal, J. L. Corral, and J. Martí, “Optical delay line employing an arrayed waveguide grating in fold-back configuration,” IEEE Microw. Wirel. Compon. Lett. 13, 238–240 (2003).
[CrossRef]

Cruz, J. L.

Díez, A.

Dong, J.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

Huang, D.

Huang, T. X. H.

T. X. H. Huang, X. Yi, L. W. Li, and R. A. Minasian, “Single passband microwave photonic signal processor based on a multi-channel chirped fiber Bragg grating,” in Proceedings of the International Topical Meeting on & Microwave Photonic Conference (IEEE, 2011), pp. 389–392.

Li, L. W.

T. X. H. Huang, X. Yi, L. W. Li, and R. A. Minasian, “Single passband microwave photonic signal processor based on a multi-channel chirped fiber Bragg grating,” in Proceedings of the International Topical Meeting on & Microwave Photonic Conference (IEEE, 2011), pp. 389–392.

Li, X.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter,” J. Lightwave Technol. 28, 2358–2365 (2010).
[CrossRef]

Martí, J.

B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32, 23–25 (2007).
[CrossRef]

B. Vidal, J. L. Corral, and J. Martí, “Optical delay line employing an arrayed waveguide grating in fold-back configuration,” IEEE Microw. Wirel. Compon. Lett. 13, 238–240 (2003).
[CrossRef]

Meslener, G. J.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216(1984).
[CrossRef]

Minasian, R. A.

C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol. 28, 262–269 (2010).
[CrossRef]

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 362–363 (2009).
[CrossRef]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filers,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[CrossRef]

X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol. 24, 4959–4965 (2006).
[CrossRef]

T. X. H. Huang, X. Yi, L. W. Li, and R. A. Minasian, “Single passband microwave photonic signal processor based on a multi-channel chirped fiber Bragg grating,” in Proceedings of the International Topical Meeting on & Microwave Photonic Conference (IEEE, 2011), pp. 389–392.

Mora, J.

Ortega, B.

Pastor, D.

Piqueras, M. A.

Pulikkaseril, C.

Sales, S.

Song, M.

M. Song, V. T. Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photonics Technol. Lett. 24, 1236–1238 (2012).
[CrossRef]

Vidal, B.

B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett. 32, 23–25 (2007).
[CrossRef]

B. Vidal, J. L. Corral, and J. Martí, “Optical delay line employing an arrayed waveguide grating in fold-back configuration,” IEEE Microw. Wirel. Compon. Lett. 13, 238–240 (2003).
[CrossRef]

Weiner, A. M.

M. Song, V. T. Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photonics Technol. Lett. 24, 1236–1238 (2012).
[CrossRef]

Xu, E.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter,” J. Lightwave Technol. 28, 2358–2365 (2010).
[CrossRef]

Xu, E. M.

L. N. Zhou, Y. J. Cheng, and E. M. Xu, “Coherence-free cascade IIR microwave photonic filter with high Q factor,” Electron. Lett. 47, 754–755 (2011).
[CrossRef]

Yao, J.

Yao, J. P.

Yi, X.

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 362–363 (2009).
[CrossRef]

X. Yi and R. A. Minasian, “Noise mitigation in spectrum sliced microwave photonic signal processors,” J. Lightwave Technol. 24, 4959–4965 (2006).
[CrossRef]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filers,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[CrossRef]

T. X. H. Huang, X. Yi, L. W. Li, and R. A. Minasian, “Single passband microwave photonic signal processor based on a multi-channel chirped fiber Bragg grating,” in Proceedings of the International Topical Meeting on & Microwave Photonic Conference (IEEE, 2011), pp. 389–392.

Yu, Y.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter,” J. Lightwave Technol. 28, 2358–2365 (2010).
[CrossRef]

Zenga, F.

Zhang, X.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter,” J. Lightwave Technol. 28, 2358–2365 (2010).
[CrossRef]

Zhang, Y.

Zhou, L.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

E. Xu, X. Zhang, L. Zhou, Y. Zhang, Y. Yu, X. Li, and D. Huang, “All-optical microwave filter with high frequency selectivity based on semiconductor optical amplifier and optical filter,” J. Lightwave Technol. 28, 2358–2365 (2010).
[CrossRef]

Zhou, L. N.

L. N. Zhou, Y. J. Cheng, and E. M. Xu, “Coherence-free cascade IIR microwave photonic filter with high Q factor,” Electron. Lett. 47, 754–755 (2011).
[CrossRef]

Electron. Lett.

L. N. Zhou, Y. J. Cheng, and E. M. Xu, “Coherence-free cascade IIR microwave photonic filter with high Q factor,” Electron. Lett. 47, 754–755 (2011).
[CrossRef]

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 362–363 (2009).
[CrossRef]

IEEE J. Quantum Electron.

G. J. Meslener, “Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection,” IEEE J. Quantum Electron. 20, 1208–1216(1984).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

B. Vidal, J. L. Corral, and J. Martí, “Optical delay line employing an arrayed waveguide grating in fold-back configuration,” IEEE Microw. Wirel. Compon. Lett. 13, 238–240 (2003).
[CrossRef]

IEEE Photonics Technol. Lett.

M. Song, V. T. Company, and A. M. Weiner, “Noise comparison of RF photonic filters based on coherent and incoherent multiwavelength sources,” IEEE Photonics Technol. Lett. 24, 1236–1238 (2012).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microwave Theor. Tech. 59, 2340–2349 (2011).
[CrossRef]

X. Yi and R. A. Minasian, “Dispersion induced RF distortion of spectrum-sliced microwave-photonic filers,” IEEE Trans. Microwave Theor. Tech. 54, 880–886 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

T. X. H. Huang, X. Yi, L. W. Li, and R. A. Minasian, “Single passband microwave photonic signal processor based on a multi-channel chirped fiber Bragg grating,” in Proceedings of the International Topical Meeting on & Microwave Photonic Conference (IEEE, 2011), pp. 389–392.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of tunable all-optical single-bandpass microwave filter. MZI, Mach–Zehnder interferometer; PM, phase modulator; EDFA, erbium-doped fiber amplifier; and PD, photodetector.

Fig. 2.
Fig. 2.

Amplitude responses of the filters implemented using PM and MZM.

Fig. 3.
Fig. 3.

Theoretical and experimental responses of the filter implemented using PM with ΔL6.8mm (Δf29.41GHz)

Fig. 4.
Fig. 4.

Theoretical and experimental responses of the filter implemented using PM with ΔL3.4mm (Δf58.82GHz).

Fig. 5.
Fig. 5.

Theoretical and experimental responses of the filter implemented using PM with ΔL10.3mm (Δf19.33GHz).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S(ω)=P0π2ln22πδf3dBe[2ln2(ωω0)2πδf3dB]2,
HMZ(ω)=12[1+Vcos(2πωω0Δω+ζ)],
Δω=2πΔf=2πc/nΔL,
E(t)J0(πvVπ)ej(ωt+φ0)+J1(πvVπ)ej[(ω+Ω)t+π2+φ1]J1(πvVπ)ej[(ωΩ)tπ2+φ2],
ERF(t)cos(φ1+φ22φ0+π2)·cos(Ωt+φ1φ22).
φ=Lβ0+Lβ1(ωω0)+L2β2(ωω0)2+L6β3(ωω0)3+,
ERF(t)cos[12β2LΩ2+12β3LΩ2(ωω0)+π2]×cos[Ωt+β1LΩ+β2LΩ(ωω0)+16β3LΩ3+12β3LΩ(ωω0)2].
HRF(Ω)cos[12β2LΩ2+12β3LΩ2(ωω0)+π2]H1(Ω)·ejβ1LΩ·ejβ2LΩ(ωω0)·ej16β3LΩ3·ej12β3LΩ(ωω0)2.
HRF(Ω)S(ω)HMZ(ω)cos[12β2LΩ2+12β3LΩ2(ωω0)+π2]·ejβ1LΩ·ejβ2LΩ(ωω0)·ej16β3LΩ3·ej12β3LΩ(ωω0)2dω,
Ω0=2πf0RF=2πβ2LΔω.

Metrics