Abstract

Vanadium dioxide (VO2) is used to implement an electrically addressable beam splitter with continuously variable splitting ratios. The electrical control of temperature in a thin VO2 layer is used to vary its transmission/reflection behavior. The technique is characterized for various incidence angles, s- and p-polarizations, and the wavelength range of 400–2000 nm. Splitting ratios continuously tunable over four orders of magnitude are reported.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mendlovic, I. Ouzieli, I. Kiryuschev, and E. Marom, “Two-dimensional wavelet transform achieved by computer-generated multireference matched filter and Dammann grating,” Appl. Opt. 34, 8213–8219 (1995).
    [CrossRef]
  2. M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge University, 1995), pp. 295–327.
  3. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, “Compact magnetooptical disk for coded data storage,” Appl. Opt. 25, 483–489 (1986).
    [CrossRef]
  4. R. K. Kostuk, T.-J. Kim, G. Campbell, and C. W. Han, “Diffractive-optic polarization-sensing element for magneto-optic storage heads,” Opt. Lett. 19, 1257–1259 (1994).
    [CrossRef]
  5. C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y- branch optical power splitter,” Opt. Commun. 193, 121–125 (2001).
    [CrossRef]
  6. L. B. Wolff, “Polarization camera for computer vision with a beam splitter,” J. Opt. Soc. Am. A 11, 2935–2945(1994).
    [CrossRef]
  7. J. N. Mait and K.-H. Brenner, “Optical symbolic substitution: system design using phase-only holograms,” Appl. Opt. 27, 1692–1700 (1988).
    [CrossRef]
  8. Z. Wen, P. Yeh, and X. Yang, “Modified two‐dimensional Hamming neural network and its optical implementation using Dammann gratings,” Opt. Eng. 35, 2136–2144(1996).
    [CrossRef]
  9. Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004).
    [CrossRef]
  10. R. Borghi, G. Cincotti, and M. Santarsiero, “Diffractive variable beam splitter: optimal design,” J. Opt. Soc. Am. A 17, 63–67 (2000).
    [CrossRef]
  11. M. M. Broer, C. G. Levey, E. Strauss, and W. M. Yen, “Variable birefringent beam splitter,” Appl. Opt. 20, 1011–1014(1981).
    [CrossRef]
  12. N. J. Harrick, “A continuously variable optical beam splitter and intensity controller,” Appl. Opt. 2, 1203–1204 (1963).
    [CrossRef]
  13. N. F. Mott, “Metal-insulator transition,” Rev. Mod. Phys. 40, 677–683 (1968).
    [CrossRef]
  14. A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
    [CrossRef]
  15. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
    [CrossRef]
  16. J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
    [CrossRef]
  17. V. Eyert, “The metal-insulator transitions of VO2: a band theoretical approach,” Ann. Phys. 11, 650–702 (2002).
    [CrossRef]
  18. R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92, 021904 (2008).
    [CrossRef]
  19. C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008).
    [CrossRef]
  20. S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092–6095 (2007).
    [CrossRef]
  21. L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
    [CrossRef]
  22. Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
    [CrossRef]
  23. J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3, 490–500 (1971).
    [CrossRef]
  24. M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
    [CrossRef]

2008 (2)

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008).
[CrossRef]

2007 (2)

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092–6095 (2007).
[CrossRef]

2006 (1)

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
[CrossRef]

2004 (2)

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
[CrossRef]

Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004).
[CrossRef]

2002 (1)

V. Eyert, “The metal-insulator transitions of VO2: a band theoretical approach,” Ann. Phys. 11, 650–702 (2002).
[CrossRef]

2001 (1)

C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y- branch optical power splitter,” Opt. Commun. 193, 121–125 (2001).
[CrossRef]

2000 (1)

1999 (1)

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

1996 (1)

Z. Wen, P. Yeh, and X. Yang, “Modified two‐dimensional Hamming neural network and its optical implementation using Dammann gratings,” Opt. Eng. 35, 2136–2144(1996).
[CrossRef]

1995 (1)

1994 (2)

1988 (1)

1986 (1)

1981 (1)

1975 (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[CrossRef]

1971 (1)

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3, 490–500 (1971).
[CrossRef]

1968 (1)

N. F. Mott, “Metal-insulator transition,” Rev. Mod. Phys. 40, 677–683 (1968).
[CrossRef]

1963 (1)

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[CrossRef]

Abe, H.

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

Ashrit, P. V.

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

Balu, R.

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

Borghi, R.

Brenner, K.-H.

Broer, M. M.

Campbell, G.

Chaker, M.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
[CrossRef]

Chaudhari, C.

C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y- branch optical power splitter,” Opt. Commun. 193, 121–125 (2001).
[CrossRef]

Chen, C.

C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008).
[CrossRef]

Chen, W.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
[CrossRef]

Choi, C.-J.

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Cincotti, G.

Clausnitzer, T.

Eyert, V.

V. Eyert, “The metal-insulator transitions of VO2: a band theoretical approach,” Ann. Phys. 11, 650–702 (2002).
[CrossRef]

Fahr, S.

Gautam, D. K.

C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y- branch optical power splitter,” Opt. Commun. 193, 121–125 (2001).
[CrossRef]

Goodenough, J. B.

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3, 490–500 (1971).
[CrossRef]

Gu, E. D.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
[CrossRef]

Guo, C.

C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008).
[CrossRef]

Haddad, E.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
[CrossRef]

Han, C. W.

Harrick, N. J.

Hu, B.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
[CrossRef]

Hu, T.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
[CrossRef]

Hua, J.

Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004).
[CrossRef]

Ito, M.

Joo, H. J.

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Kaku, T.

Kang, D. J.

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Kim, K.

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Kim, T.-J.

Kiryuschev, I.

Kley, E.-B.

Kostuk, R. K.

Kruzelecky, R. V.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
[CrossRef]

Levey, C. G.

Mai, L. Q.

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
[CrossRef]

Mait, J. N.

Mansuripur, M.

M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge University, 1995), pp. 295–327.

Margot, J.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
[CrossRef]

Marom, E.

Mendlovic, D.

Miyashita, A.

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[CrossRef]

Mott, N. F.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[CrossRef]

N. F. Mott, “Metal-insulator transition,” Rev. Mod. Phys. 40, 677–683 (1968).
[CrossRef]

Naramoto, H.

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

Narumi, K.

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

Nashiyama, I.

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

Ojima, M.

Ouzieli, I.

Patil, D. S.

C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y- branch optical power splitter,” Opt. Commun. 193, 121–125 (2001).
[CrossRef]

Porter, A. E.

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Saito, A.

Santarsiero, M.

Shang, L.

C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008).
[CrossRef]

Sohn, J. I.

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Soltani, M.

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
[CrossRef]

Strauss, E.

Sugita, Y.

Takayama, S.

Tsunoda, Y.

Tünnermann, A.

Wang, R.

C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008).
[CrossRef]

Wang, S. H.

Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004).
[CrossRef]

Welland, M. E.

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Wen, Z.

Z. Wen, P. Yeh, and X. Yang, “Modified two‐dimensional Hamming neural network and its optical implementation using Dammann gratings,” Opt. Eng. 35, 2136–2144(1996).
[CrossRef]

Wolff, L. B.

Wu, Z. P.

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

Yamamoto, S.

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

Yang, X.

Z. Wen, P. Yeh, and X. Yang, “Modified two‐dimensional Hamming neural network and its optical implementation using Dammann gratings,” Opt. Eng. 35, 2136–2144(1996).
[CrossRef]

Yeh, P.

Z. Wen, P. Yeh, and X. Yang, “Modified two‐dimensional Hamming neural network and its optical implementation using Dammann gratings,” Opt. Eng. 35, 2136–2144(1996).
[CrossRef]

Yen, W. M.

Zhong, Z. Q.

Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004).
[CrossRef]

Zhou, J.

Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004).
[CrossRef]

Zylbersztejn, A.

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[CrossRef]

Ann. Phys. (1)

V. Eyert, “The metal-insulator transitions of VO2: a band theoretical approach,” Ann. Phys. 11, 650–702 (2002).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

R. Balu and P. V. Ashrit, “Near-zero IR transmission in the metal-insulator transition of VO2 thin films,” Appl. Phys. Lett. 92, 021904 (2008).
[CrossRef]

C. Chen, R. Wang, L. Shang, and C. Guo, “Gate-field-induced phase transitions in VO2: monoclinic metal phase separation and switchable infrared reflections,” Appl. Phys. Lett. 93, 171101 (2008).
[CrossRef]

M. Soltani, M. Chaker, E. Haddad, R. V. Kruzelecky, and J. Margot, “Effects of Ti–W codoping on the optical and electrical switching of vanadium dioxide thin films grown by a reactive pulsed laser deposition,” Appl. Phys. Lett. 85, 1958–1960 (2004).
[CrossRef]

J. Appl. Phys. (1)

Z. P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, “Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film,” J. Appl. Phys. 86, 5311–5313 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (1)

L. Q. Mai, B. Hu, T. Hu, W. Chen, and E. D. Gu, “Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method,” J. Phys. Chem. B 110, 19083–19086 (2006).
[CrossRef]

J. Solid State Chem. (1)

J. B. Goodenough, “The two components of the crystallographic transition in VO2,” J. Solid State Chem. 3, 490–500 (1971).
[CrossRef]

Nano Lett. (1)

J. I. Sohn, H. J. Joo, A. E. Porter, C.-J. Choi, K. Kim, D. J. Kang, and M. E. Welland, “Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO2 nanowires,” Nano Lett. 7, 1570–1574 (2007).
[CrossRef]

Opt. Commun. (2)

C. Chaudhari, D. S. Patil, and D. K. Gautam, “A new technique for the reduction of the power loss in the Y- branch optical power splitter,” Opt. Commun. 193, 121–125 (2001).
[CrossRef]

Z. Q. Zhong, J. Hua, J. Zhou, and S. H. Wang, “Two-output beam splitter with continuously adjustable splitting ratio based on phase grating,” Opt. Commun. 234, 7–12 (2004).
[CrossRef]

Opt. Eng. (1)

Z. Wen, P. Yeh, and X. Yang, “Modified two‐dimensional Hamming neural network and its optical implementation using Dammann gratings,” Opt. Eng. 35, 2136–2144(1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

A. Zylbersztejn and N. F. Mott, “Metal-insulator transition in vanadium dioxide,” Phys. Rev. B 11, 4383–4395 (1975).
[CrossRef]

Phys. Rev. Lett. (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3, 34–36 (1959).
[CrossRef]

Rev. Mod. Phys. (1)

N. F. Mott, “Metal-insulator transition,” Rev. Mod. Phys. 40, 677–683 (1968).
[CrossRef]

Other (1)

M. Mansuripur, The Physical Principles of Magneto-Optical Recording (Cambridge University, 1995), pp. 295–327.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Diagram (a) photograph and (b) the electrical temperature control device.

Fig. 2.
Fig. 2.

Ellipsometer used for characterizing the variable beam splitter: P, input polarizer; C, input compensator; RP, reflection polarizer; RC, reflection compensator; TP, transmission polarizer; TC, transmission compensator; R, reflection detector; T, transmission detector; SR, sample rotator; and DR, rotator of the transmission detector. The full optical characterization is done simultaneously along with temperature control and measurement using a thermocouple.

Fig. 3.
Fig. 3.

Transmittance (a) reflectance and (b) spectra at room temperature (25°C) and at high temperature (75°C), for an incidence angle of 20 deg and at linear polarizations S and P.

Fig. 4.
Fig. 4.

Switched and normal beam-splitting ratios Q=T/R as a function of the incidence angle for both s- and p-polarized light-beam wavelengths of (a) 1550, (b) 1800, and (c) 2000 nm.

Fig. 5.
Fig. 5.

Wavelength dependence of the splitting ratio change at fixed angles of incidence.

Fig. 6.
Fig. 6.

Real-time operation of the beam-splitter device with s-polarized light at 1550 nm, for incidence angles of (a) 20 and (c) 45 deg. The reversible heating–cooling cycle [(b) and (d)] exhibits hysteresis.

Fig. 7.
Fig. 7.

Real-time operation of the beam-splitter device with s-polarized light at 1800 nm, for incidence angles of (a) 20 and (c) 45 deg. The reversible heating–cooling cycle [Figs. 6(b) and 6(d)] exhibits hysteresis.

Fig. 8.
Fig. 8.

Time evolution of the splitting ratio during the heating–cooling cycles of Figs. 6 and 7.

Tables (1)

Tables Icon

Table 1. Ranges of Splitting Ratios Attained in Studies of Variable Beam Splitters

Metrics