Abstract

The characteristic size of a collimated Gaussian beam propagating through 1–13 km atmospheric paths is investigated by simulating phase screens using the fast Fourier transform method. Taking a threshold into account, a method to derive a modified centroid and corresponding characteristic radii of the short-term spots is proposed. Effective radius, robust radius, sharpness radius, and maximum radius are analyzed by probability statistics. Furthermore, several parameters representing the energy content of the spots within each radius and the energy duty cycle of the maximum radius are studied. The study shows that, when the modified centroid is taken as a center, the effective radius is more suitable for application after a long propagation path, while the maximum radius is more effective for a short distance. However, when all effective subspots of a short-term image are investigated, the maximum radius is usually utilized, and the energy duty cycle represents the effect probability.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Propagation characteristics of decentered annular beams through non-Kolmogorov turbulence

Xiaoqing Li and Xiaoling Ji
J. Opt. Soc. Am. A 31(1) 172-182 (2014)

Arbitrary moments of elliptical Gaussian-Schell beam in turbulent atmosphere

Xiuxiang Chu
J. Opt. Soc. Am. A 28(5) 917-923 (2011)

Theoretical and numerical investigation of filament onset distance in atmospheric turbulence

J. Peñano, B. Hafizi, A. Ting, and M. Helle
J. Opt. Soc. Am. B 31(5) 963-971 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription