Abstract

When aqueous suspensions of gold nanorods are irradiated with a pulsing laser (808 nm), pressure waves appear even at low frequencies (pulse repetition rate of 25 kHz). We found that the pressure wave amplitude depends on the dynamics of the phenomenon. For fixed concentration and average laser current intensity, the amplitude of the pressure waves shows a trend of increasing with the pulse slope and the pulse maximum amplitude. We postulate that the detected ultrasonic pressure waves are a sort of shock waves that would be generated at the beginning of each pulse, because the pressure wave amplitude would be the result of the positive interference of all the individual shock waves.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
    [CrossRef]
  2. C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
    [CrossRef]
  3. H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
    [CrossRef]
  4. G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008).
    [CrossRef]
  5. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
    [CrossRef]
  6. S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
    [CrossRef]
  7. G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
    [CrossRef]
  8. C. A. Peng and C. H. Wang, “Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation,” Cancers 3, 227–240 (2011).
    [CrossRef]
  9. G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
    [CrossRef]
  10. A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
    [CrossRef]
  11. R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
    [CrossRef]
  12. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
    [CrossRef]
  13. E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
    [CrossRef]
  14. W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012).
    [CrossRef]
  15. T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
    [CrossRef]
  16. V. Pustovalov and V. Zharov, “Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles,” Proc. SPIE 6854, 685412 (2008).
    [CrossRef]
  17. M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
    [CrossRef]
  18. R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
    [CrossRef]
  19. R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008).
    [CrossRef]
  20. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
    [CrossRef]
  21. J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
    [CrossRef]
  22. V. P. Pattani and J. W. Tunnell, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
    [CrossRef]
  23. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  24. S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(8), 34–39 (2009).
    [CrossRef]
  25. G. J. Diebold and T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acta Acust. United Acust. 80, 339–351 (1994).

2012 (6)

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
[CrossRef]

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012).
[CrossRef]

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

V. P. Pattani and J. W. Tunnell, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[CrossRef]

2011 (3)

E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
[CrossRef]

S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
[CrossRef]

C. A. Peng and C. H. Wang, “Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation,” Cancers 3, 227–240 (2011).
[CrossRef]

2009 (5)

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[CrossRef]

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(8), 34–39 (2009).
[CrossRef]

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
[CrossRef]

2008 (5)

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008).
[CrossRef]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008).
[CrossRef]

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[CrossRef]

V. Pustovalov and V. Zharov, “Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles,” Proc. SPIE 6854, 685412 (2008).
[CrossRef]

2007 (2)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef]

2006 (1)

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

2003 (1)

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

1994 (1)

G. J. Diebold and T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acta Acust. United Acust. 80, 339–351 (1994).

Agarwal, A.

S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
[CrossRef]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Agrawal, A.

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

Alkilany, A. M.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
[CrossRef]

Bandaru, N. K.

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

Bhatia, S. N.

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

Bollinger, B. M.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008).
[CrossRef]

Boulos, S. P.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
[CrossRef]

Carson, A.

S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
[CrossRef]

Chen, H.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Cheng, J. X.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[CrossRef]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

Choi, W. I.

W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012).
[CrossRef]

Chu, P. K.

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Chumakov, D. S.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Cole, J. R.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
[CrossRef]

Darbha, G. K.

G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008).
[CrossRef]

Das, S. K.

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

del Pozo, F.

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

Diebold, G. J.

G. J. Diebold and T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acta Acust. United Acust. 80, 339–351 (1994).

Dreaden, E. C.

E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
[CrossRef]

Duree, G. C.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008).
[CrossRef]

Eide, J.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

El-Sayed, M. A.

E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
[CrossRef]

Emelianov, S. Y.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(8), 34–39 (2009).
[CrossRef]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Fernández, T.

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

George, T. F.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008).
[CrossRef]

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Gong, S.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Goodrich, G. P.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
[CrossRef]

Ha, S.

S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
[CrossRef]

Halas, N. J.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
[CrossRef]

Hansen, M. N.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

Hartland, G. V.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Hu, M.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

Huang, H.

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Huang, X.

E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
[CrossRef]

Huff, T. B.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

Irudayaraj, J.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef]

Ivanov, A. V.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Jaskula-Sztul, R.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Javadi, A.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Joenathan, C.

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Juste, J. P.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

Kang, B.

E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
[CrossRef]

Khlebtsov, B. N.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Khlebtsov, N. G.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Kim, K.

S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
[CrossRef]

Kim, Y. H.

W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012).
[CrossRef]

Knight, M. W.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
[CrossRef]

Kotov, N. A.

S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
[CrossRef]

Kou, X.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[CrossRef]

Kunnimalaiyaan, M.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Larson, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Letfullin, R. R.

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008).
[CrossRef]

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Li, P. C.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(8), 34–39 (2009).
[CrossRef]

Liao, B.

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Liu, X.

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Mackey, M. A.

E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
[CrossRef]

Maksimova, I. L.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Martínez, A.

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Mirin, N. A.

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
[CrossRef]

Mulvaney, P.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

Murphy, C. J.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
[CrossRef]

Ni, W.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

O’Donnell, M.

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(8), 34–39 (2009).
[CrossRef]

Park, J. H.

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Pattani, V. P.

V. P. Pattani and J. W. Tunnell, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[CrossRef]

Peng, C. A.

C. A. Peng and C. H. Wang, “Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation,” Cancers 3, 227–240 (2011).
[CrossRef]

Polyanskaya, N. I.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Pustovalov, V.

V. Pustovalov and V. Zharov, “Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles,” Proc. SPIE 6854, 685412 (2008).
[CrossRef]

Rai, U. S.

G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008).
[CrossRef]

Ramos, M.

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

Ray, P. C.

G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008).
[CrossRef]

Sader, J. E.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

Sahu, A.

W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012).
[CrossRef]

Sailor, M. J.

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

Sánchez, C.

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

Serrano, J. J.

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Singh, A. K.

G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008).
[CrossRef]

Sisco, P. N.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
[CrossRef]

Skaptsov, A. A.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Sokolov, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

Sun, T.

G. J. Diebold and T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acta Acust. United Acust. 80, 339–351 (1994).

Tae, G.

W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012).
[CrossRef]

Terentyuk, G. S.

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Thompson, L. B.

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
[CrossRef]

Tong, L.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[CrossRef]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

Tunnell, J. W.

V. P. Pattani and J. W. Tunnell, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[CrossRef]

Von Maltzahn, G.

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

Wang, C. H.

C. A. Peng and C. H. Wang, “Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation,” Cancers 3, 227–240 (2011).
[CrossRef]

Wang, J.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[CrossRef]

Wang, X.

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

Wei, A.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[CrossRef]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

Wei, Q.

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[CrossRef]

Xiao, Y.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Xu, W.

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Yang, Z.

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[CrossRef]

Yi, P.

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Yu, C.

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef]

Yu, X.

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Zeng, Y.

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Zhao, Y.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

Zharov, V.

V. Pustovalov and V. Zharov, “Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles,” Proc. SPIE 6854, 685412 (2008).
[CrossRef]

Zharov, V. P.

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

ACS Nano (1)

W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering, and absorption cross sections of gold nanorods,” ACS Nano 2, 677–686 (2008).
[CrossRef]

Acta Acust. United Acust. (1)

G. J. Diebold and T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acta Acust. United Acust. 80, 339–351 (1994).

Adv. Drug Delivery Rev. (1)

A. M. Alkilany, L. B. Thompson, S. P. Boulos, P. N. Sisco, and C. J. Murphy, “Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions,” Adv. Drug Delivery Rev. 64, 190–199 (2012).
[CrossRef]

Adv. Mater. (1)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. 19, 3136–3141 (2007).
[CrossRef]

Adv. Opt. Technol. (1)

R. R. Letfullin, T. F. George, G. C. Duree, and B. M. Bollinger, “Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches,” Adv. Opt. Technol. 2008, 251718 (2008).
[CrossRef]

Anal. Chem. (1)

C. Yu and J. Irudayaraj, “Multiplex biosensor using gold nanorods,” Anal. Chem. 79, 572–579 (2007).
[CrossRef]

Ann. Biomed. Eng. (1)

W. I. Choi, A. Sahu, Y. H. Kim, and G. Tae, “Photothermal cancer therapy and imaging based on gold nanorods,” Ann. Biomed. Eng. 40, 534–546 (2012).
[CrossRef]

Biomaterials (1)

H. Huang, X. Liu, Y. Zeng, X. Yu, B. Liao, P. Yi, and P. K. Chu, “Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods,” Biomaterials 30, 5622–5630 (2009).
[CrossRef]

Cancer Res. (1)

G. Von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, “Computationally guided photothermal tumor therapy using long circulating gold nanorod antennas,” Cancer Res. 69, 3892–3900 (2009).
[CrossRef]

Cancers (1)

C. A. Peng and C. H. Wang, “Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation,” Cancers 3, 227–240 (2011).
[CrossRef]

Chem. Eur. J. (1)

G. K. Darbha, U. S. Rai, A. K. Singh, and P. C. Ray, “Gold-nanorod-based sensing of sequence specific HIV-1 virus DNA by using hyper-Rayleigh scattering spectroscopy,” Chem. Eur. J. 14, 3896–3903 (2008).
[CrossRef]

Chem. Soc. Rev. (1)

E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed, “Beating cancer in multiple ways using nanogold,” Chem. Soc. Rev. 40, 3391–3404 (2011).
[CrossRef]

Int. J. Nanomedicine (1)

T. Fernández, C. Sánchez, A. Martínez, F. del Pozo, J. J. Serrano, and M. Ramos, “Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods,” Int. J. Nanomedicine 7, 1511–1523 (2012).
[CrossRef]

J. Am. Chem. Soc. (1)

M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational response of nanorods to ultrafast laser induced heating: theoretical and experimental analysis,” J. Am. Chem. Soc. 125, 14925–14933 (2003).
[CrossRef]

J. Biomed. Opt. (1)

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[CrossRef]

J. Phys. Chem. B (1)

J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, “Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications,” J. Phys. Chem. B 113, 12090–12094 (2009).
[CrossRef]

J. Surg. Res. (1)

R. Jaskula-Sztul, Y. Xiao, A. Javadi, J. Eide, W. Xu, M. Kunnimalaiyaan, S. Gong, and H. Chen, “Multifunctional gold nanorods for targeted drug delivery to carcinoids,” J. Surg. Res. 172, 235 (2012).
[CrossRef]

Lasers Surg. Med. (1)

V. P. Pattani and J. W. Tunnell, “Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types,” Lasers Surg. Med. 44, 675–684 (2012).
[CrossRef]

Nanomedicine (1)

R. R. Letfullin, C. Joenathan, T. F. George, and V. P. Zharov, “Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer,” Nanomedicine 1, 473–480 (2006).
[CrossRef]

Opt. Express (1)

S. Ha, A. Carson, A. Agarwal, N. A. Kotov, and K. Kim, “Detection and monitoring of the multiple inflammatory responses by photoacoustic molecular imaging using selectively targeted gold nanorods,” Opt. Express 2, 645–657 (2011).
[CrossRef]

Photochem. Photobiol. (1)

L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85, 21–32 (2009).
[CrossRef]

Phys. Today (1)

S. Y. Emelianov, P. C. Li, and M. O’Donnell, “Photoacoustics for molecular imaging and therapy,” Phys. Today 62(8), 34–39 (2009).
[CrossRef]

Proc. SPIE (1)

V. Pustovalov and V. Zharov, “Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles,” Proc. SPIE 6854, 685412 (2008).
[CrossRef]

Quantum Electron. (1)

G. S. Terentyuk, A. V. Ivanov, N. I. Polyanskaya, I. L. Maksimova, A. A. Skaptsov, D. S. Chumakov, B. N. Khlebtsov, and N. G. Khlebtsov, “Photothermal effects induced by laser heating of gold nanorods in suspensions and inoculated tumours during in vivo experiments,” Quantum Electron. 42, 380–389 (2012).
[CrossRef]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental enclosure diagram (view from above).

Fig. 2.
Fig. 2.

Shape and peak values (labels) of laser power and fitting curves for different duty cycles (from 40% to 100% with ILASER=1.5A).

Fig. 3.
Fig. 3.

Correspondence between different duty cycles and maximum amplitude values A obtained from the fit of the laser pulses (diamonds), and fitted curve connecting these two parameters from the equations that define the total amount of energy of each laser pulse from an integration process to obtain the area under the pulses (A=maximum amplitude (a.u.), DC=duty cycle (%), meansquarederror=R2, ILASER=1.50A, 36μg/ml).

Fig. 4.
Fig. 4.

Average voltage from sensors 1, 3, and 4, and fitting lines for different concentrations. Dutycycle=80% and ILASER in the range 0.75–3.75 A (0.75 A, diamonds; 1.50 A, squares; 2.25 A, triangles; 3.00 A, circles; and 3.75 A, asterisks), with steps of 0.75 A [sensor average voltage (nV)=VAVG, GNR concentration (μg/ml)=C, mean squared error=R2].

Fig. 5.
Fig. 5.

Slopes (diamonds) and offset values (squares) of the fitted lines obtained in Fig. 4 for different values of average laser intensities (ILASER) and a fixed duty cycle of 80% (meansquarederror=R2).

Fig. 6.
Fig. 6.

Sensor 3 output and fitting lines for different laser intensities in a duty cycle sweep (GNR concentration of 36μg/ml).

Fig. 7.
Fig. 7.

Dependence of the voltage levels on the maximum amplitude value A of the rising edges of the pulses [voltage(nV)=V, maximum amplitude value(a.u.)=A, mean squared error=R2] for different average laser current intensities (ILASER=0.75, 1.50, and 2.25 A) in a duty cycle sweep (36μg/ml, sensor 3).

Fig. 8.
Fig. 8.

Dependence of the voltage levels on the slope (t=0s) of the rising edges of the pulses [voltage(nV)=V, slope (t=0s)=m, mean squared error=R2] for different average laser current intensities (ILASER=0.75, 1.50, and 2.25 A) in a duty cycle sweep (36μg/ml, sensor 3).

Tables (3)

Tables Icon

Table 1. Maximum Average Current Feeding the Laser for Different Duty Cycles

Tables Icon

Table 2. Connection between the Parameters of the Laser Pulses and the Fitted Exponential Curves (ILASER=1.50A, 36μg/ml)

Tables Icon

Table 3. Lock-In Amplifier Output for Different Values of Gold Nanorod Concentration (DutyCycle=80%, ILASER=3.75A)a

Metrics