Abstract

A 1.94 μm switchable dual-wavelength Tm3+ fiber laser employing two high-birefringence fiber Bragg gratings (HB-FBGs) is demonstrated. The polarization hole burning effect enhanced by the HB-FBG is first observed and adopted to guarantee stable dual-wavelength operation in the spectral region near 2 μm at room temperature. The wavelength spacing between the dual lasing wavelengths is 0.81 nm. The polarization states of the dual-output lasers are orthogonal. By adjusting a polarization controller, a single-wavelength mode operating at one of the dual wavelengths can be selected. The side-mode-suppression ratio of each laser can be greater than 60 dB. The power fluctuation measurement at both operating wavelengths shows that this Tm3+ fiber laser has good stability.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pal, R. Sen, K. Bremer, S. Yao, E. Lewis, T. Sun, and K. T. V. Grattan, “All-fiber tunable laser in the 2 μm region, designed for CO2 detection,” Appl. Opt. 51, 7011–7015 (2012).
    [CrossRef]
  2. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 um,” IEEE J. Sel. Top. Quantum Electron. 13, 567–572 (2007).
    [CrossRef]
  3. N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009).
    [CrossRef]
  4. Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
    [CrossRef]
  5. B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
    [CrossRef]
  6. G. A. Newburgh, Z. Fleischman, and M. Dubinskii, “Highly efficient dual-wavelength laser operation of cryo-cooled resonantly (in-band) pumped Ho3+:YVO4 laser,” Opt. Lett. 37, 3888–3890 (2012).
    [CrossRef]
  7. S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33, 764–766 (2008).
    [CrossRef]
  8. A. Bellemare, M. Karásek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18, 825–831 (2000).
    [CrossRef]
  9. X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20, 7088–7094 (2012).
    [CrossRef]
  10. X. Feng, H.-y. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
    [CrossRef]
  11. G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett. 21, 1250–1252 (1996).
    [CrossRef]
  12. S. Qin, D. Chen, Y. Tang, and S. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and erbium-doped fiber gains,” Opt. Express 14, 10522–10527 (2006).
    [CrossRef]
  13. G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett. 14, 606–608 (2002).
    [CrossRef]
  14. Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
    [CrossRef]
  15. L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
    [CrossRef]
  16. V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
    [CrossRef]
  17. D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983).
    [CrossRef]
  18. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12, 2056–2061 (2004).
    [CrossRef]
  19. J. Sun, J. Qiu, and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
    [CrossRef]
  20. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16, 11830–11835 (2008).
    [CrossRef]

2013

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
[CrossRef]

2012

2009

N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009).
[CrossRef]

2008

2007

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 um,” IEEE J. Sel. Top. Quantum Electron. 13, 567–572 (2007).
[CrossRef]

L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

2006

2005

Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
[CrossRef]

2004

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12, 2056–2061 (2004).
[CrossRef]

2002

G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett. 14, 606–608 (2002).
[CrossRef]

2000

1996

1994

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[CrossRef]

1983

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983).
[CrossRef]

Barnes, N. P.

N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009).
[CrossRef]

Bellemare, A.

Bremer, K.

Chao, L.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Chaudhuri, P. R.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Chen, D.

Chen, L. R.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
[CrossRef]

Chuan, T. S.

L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

Chun-Liu, Z.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Cowle, G. J.

Das, G.

G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett. 14, 606–608 (2002).
[CrossRef]

DeYoung, R. J.

N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009).
[CrossRef]

Dong, X.

Duan, L.

L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

Dubinskii, M.

Feng, S.

Feng, X.

Feng, Y.

Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
[CrossRef]

Fleischman, Z.

Frison, B.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
[CrossRef]

Grattan, K. T. V.

Gu, X.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
[CrossRef]

Gu, Z.

Guanshi, Q.

Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
[CrossRef]

Haas, R. A.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983).
[CrossRef]

Hall, D. W.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983).
[CrossRef]

He, S.

Hong, N. J.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Huang, D.

J. Sun, J. Qiu, and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

Huang, S.

Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
[CrossRef]

Jackson, S. D.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 um,” IEEE J. Sel. Top. Quantum Electron. 13, 567–572 (2007).
[CrossRef]

Jian, S.

Kai, G.

Karásek, M.

Krupke, W. F.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983).
[CrossRef]

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 um,” IEEE J. Sel. Top. Quantum Electron. 13, 567–572 (2007).
[CrossRef]

LaRochelle, S.

Lewis, E.

Lit, J. W. Y.

G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett. 14, 606–608 (2002).
[CrossRef]

Liu, J.

Liu, X.

Liu, Y.

Lou, C.

Lu, S.

Luo, S.

Mao, X.

Mazurczyk, V. J.

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[CrossRef]

Newburgh, G. A.

Ning, T.

Pal, A.

Pan, S.

Qin, S.

Qiu, J.

J. Sun, J. Qiu, and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

Quoc, N. N.

L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

Reichle, D. J.

N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009).
[CrossRef]

Rochette, M.

Saad, M.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
[CrossRef]

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 um,” IEEE J. Sel. Top. Quantum Electron. 13, 567–572 (2007).
[CrossRef]

Sarmani, A. R.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
[CrossRef]

Sen, R.

Shen, Q.

Shirakawa, A.

Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
[CrossRef]

Stepanov, D. Y.

Sun, J.

J. Sun, J. Qiu, and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

Sun, T.

Tam, H.-y.

Tang, Y.

Tetu, M.

Ueda, K.-i.

Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
[CrossRef]

Wai, P. K. A.

Walsh, B. M.

N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009).
[CrossRef]

Wang, Y.

Weber, M. J.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983).
[CrossRef]

Xin, G.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Xinyong, D.

L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Xiufeng, Y.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Xu, O.

Yao, S.

Yuan, S.

Zhan, L.

Zhao, X.

Zyskind, J. L.

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[CrossRef]

Appl. Opt.

Electron. Lett.

B. Frison, A. R. Sarmani, L. R. Chen, X. Gu, and M. Saad, “Dual-wavelength S-band Tm3+:ZBLAN fibre laser with 0.6 nm wavelength spacing,” Electron. Lett. 49, 60–62 (2013).
[CrossRef]

IEEE J. Quantum Electron.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in neodymium glass lasers,” IEEE J. Quantum Electron. 19, 1704–1717 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 um,” IEEE J. Sel. Top. Quantum Electron. 13, 567–572 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett. 14, 606–608 (2002).
[CrossRef]

L. Duan, N. N. Quoc, T. S. Chuan, and D. Xinyong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photon. Technol. Lett. 19, 1148–1150 (2007).
[CrossRef]

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 616–618 (1994).
[CrossRef]

Q. Guanshi, S. Huang, Y. Feng, A. Shirakawa, and K.-i. Ueda, “Multiple-wavelength up-conversion laser in Tm3+-doped ZBLAN glass fiber,” IEEE Photon. Technol. Lett. 17, 1818–1820 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

J. Sun, J. Qiu, and D. Huang, “Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning,” Opt. Commun. 182, 193–197 (2000).
[CrossRef]

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, “Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313–317 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

N. P. Barnes, B. M. Walsh, D. J. Reichle, and R. J. DeYoung, “Tm:fiber lasers for remote sensing,” Opt. Mater. 31, 1061–1064 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Configuration of the proposed 1.94 μm switchable dual-wavelength Tm3+ fiber laser employing HB-FBGs. LD, laser diode; PC, polarization controller; FC, fiber combiner.

Fig. 2.
Fig. 2.

Transmission spectra of the HB-FBG illuminated by a polarized white-light source.

Fig. 3.
Fig. 3.

Spectrum of dual-wavelength operation.

Fig. 4.
Fig. 4.

(a) Repeatedly scanning spectra within half an hour and (b) central wavelength drift and laser power fluctuation versus time.

Fig. 5.
Fig. 5.

(a) SMSR and (b) max power fluctuation operating at dual-wavelength mode versus the pump power.

Fig. 6.
Fig. 6.

Laser spectra of the single-wavelength operation (a) at 1941.52 nm and (b) at 1942.33 nm.

Fig. 7.
Fig. 7.

Repeatedly scanning spectral measurement of the single-wavelength operation (a), (b) at 1941.52 nm and (c), (d) at 1942.33 nm.

Fig. 8.
Fig. 8.

(a) SMSR and (b) maximum power fluctuation operating at single-wavelength mode versus the pump power.

Fig. 9.
Fig. 9.

Schematic of polarization state measurement setup.

Fig. 10.
Fig. 10.

Output spectra with only one arbitrary wavelength.

Fig. 11.
Fig. 11.

Output power versus launched pump power with different output coupler reflectivities R: a, R=82%; b, R=50%.

Metrics