Abstract

The performance of the resonator integrated optic gyro (RIOG) is inevitably influenced by the intensity variation of the laser. In this work, the effect of intensity variation of the laser is mathematically formulized, analyzed, and experimentally validated, to our knowledge for the first time. First, the demodulated curves with different light intensities input of the integrated optical resonator (IOR) are simulated; the relationship between the slope of the demodulated curve near the resonant point and the light intensity input of the IOR is obtained. Second, the amplitudes of the output square waveforms with different zero biases are demonstrated, and it can be concluded that the effect of intensity variation has a high correlation with the nonzero bias between the clockwise and counterclockwise resonant frequency. Third, the experimental setup is constructed and the related measurements are performed, the test results are in good agreement with the analytical and numerical simulation, and in order to reach the limited ultimate sensitivity of the RIOG, it is necessary to restrict the nonreciprocal zero bias within 8.1deg/s under an open-loop output scheme. Furthermore, to eliminate the noise induced by intensity variation of the laser and realize a high performance RIOG, a closed-loop operation is required.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefevre, The Fiber-Optic Gyroscope (National Defence Industry, 2002).
  2. M. Lei, L. Feng, Y. Zhi, H. Liu, J. Wang, X. Ren, and N. Su, “Current modulation technique used in resonator micro-optic gyro,” Appl. Opt. 52, 307–313 (2013).
    [CrossRef]
  3. K. Hotate, “Passive and active resonator fiber optic gyros,” Proc. SPIE 2895, 68–78 (1996).
    [CrossRef]
  4. S. J. Sanders, L. K. Strandjord, and D. Mead, “Fiber optic gyro technology trends—a Honeywell perspective,” Proc. IEEE 1, 5–8 (2002).
  5. S. Emge and S. Bennett, “Reduced minimum configuration fiber optic gyro for land navigation applications,” IEEE Aerosp. Electron. Syst. Mag. 12(4), 18–21 (1997).
    [CrossRef]
  6. K. Hotate, X. Wang, and Z. He, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
    [CrossRef]
  7. A. W. Lawrence, “The micro-optics gyro,” in Symposium on Gyro Technology, Stuttgart, 1983.
  8. A. W. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” in Proceedings of the Navigation National Technical Meeting (The Institute of Navigation, 1990), pp. 161–166.
  9. K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
    [CrossRef]
  10. C. Monovoukas, A. K. Swiechi, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” Proc. SPIE 3936, 293–300 (2000).
    [CrossRef]
  11. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
    [CrossRef]
  12. Y. Vlasov, W. Green, M. William, and F. Xia, “High-throughput silicon nanophotonic wavelength insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [CrossRef]
  13. L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
    [CrossRef]
  14. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
    [CrossRef]
  15. F. Zarinetchi and Z. S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986).
    [CrossRef]
  16. H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–3344 (2012).
    [CrossRef]
  17. X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
    [CrossRef]
  18. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “Compensation of the optical Kerr effect in fiber-optic gyroscopes,” Opt. Lett. 7, 282–284 (1982).
    [CrossRef]
  19. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4, 645–651 (1986).
    [CrossRef]
  20. D. Ying, M. S. Demokan, X. Zhang, and W. Jin, “Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation,” Appl. Opt. 49, 529–535 (2010).
    [CrossRef]
  21. L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
    [CrossRef]
  22. H. Ma, X. Chang, H. Mao, and Z. Jin, “Laser frequency noise limited sensitivity in a resonator optic gyroscope,” Proceedings of 15th Opto-Electronics and Communications Conference (OECC) (IEEE, 2010), Vol. 8P-70, pp. 706–707.
  23. K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
    [CrossRef]
  24. L. Feng, M. Lei, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
    [CrossRef]
  25. D. M. Shupe, “Thermally induced nonreciprocity in fiber-optic interferometer,” Appl. Opt. 19, 654–655 (1980).
    [CrossRef]
  26. S. Blin, H. K. Kim, M. J. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
    [CrossRef]
  27. L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
    [CrossRef]
  28. D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
    [CrossRef]
  29. A. D. Whalen, Detection of Signal in Noise (Academic, 1971).
  30. H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
    [CrossRef]

2013 (2)

2012 (2)

H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–3344 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

2011 (2)

L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

2010 (2)

2009 (2)

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

K. Hotate, X. Wang, and Z. He, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

2008 (2)

Y. Vlasov, W. Green, M. William, and F. Xia, “High-throughput silicon nanophotonic wavelength insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

2007 (1)

2002 (1)

S. J. Sanders, L. K. Strandjord, and D. Mead, “Fiber optic gyro technology trends—a Honeywell perspective,” Proc. IEEE 1, 5–8 (2002).

2000 (2)

C. Monovoukas, A. K. Swiechi, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” Proc. SPIE 3936, 293–300 (2000).
[CrossRef]

K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
[CrossRef]

1997 (2)

S. Emge and S. Bennett, “Reduced minimum configuration fiber optic gyro for land navigation applications,” IEEE Aerosp. Electron. Syst. Mag. 12(4), 18–21 (1997).
[CrossRef]

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

1996 (1)

K. Hotate, “Passive and active resonator fiber optic gyros,” Proc. SPIE 2895, 68–78 (1996).
[CrossRef]

1991 (1)

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

1986 (3)

1982 (1)

1980 (1)

Bennett, S.

S. Emge and S. Bennett, “Reduced minimum configuration fiber optic gyro for land navigation applications,” IEEE Aerosp. Electron. Syst. Mag. 12(4), 18–21 (1997).
[CrossRef]

Bergh, R. A.

Blin, S.

Chang, X.

H. Ma, X. Chang, H. Mao, and Z. Jin, “Laser frequency noise limited sensitivity in a resonator optic gyroscope,” Proceedings of 15th Opto-Electronics and Communications Conference (OECC) (IEEE, 2010), Vol. 8P-70, pp. 706–707.

Demokan, M. S.

Digonnet, M. J.

Emge, S.

S. Emge and S. Bennett, “Reduced minimum configuration fiber optic gyro for land navigation applications,” IEEE Aerosp. Electron. Syst. Mag. 12(4), 18–21 (1997).
[CrossRef]

Ezekiel, Z. S.

Feng, L.

M. Lei, L. Feng, Y. Zhi, H. Liu, J. Wang, X. Ren, and N. Su, “Current modulation technique used in resonator micro-optic gyro,” Appl. Opt. 52, 307–313 (2013).
[CrossRef]

L. Feng, M. Lei, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Green, W.

Y. Vlasov, W. Green, M. William, and F. Xia, “High-throughput silicon nanophotonic wavelength insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Harumoto, M.

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

He, Z.

Higashiguchi, M.

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4, 645–651 (1986).
[CrossRef]

Hong, L.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Hotate, K.

X. Wang, Z. He, and K. Hotate, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator with twin 90° polarization-axis rotated splices,” Opt. Express 18, 1677–1683 (2010).
[CrossRef]

K. Hotate, X. Wang, and Z. He, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
[CrossRef]

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

K. Hotate, “Passive and active resonator fiber optic gyros,” Proc. SPIE 2895, 68–78 (1996).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4, 645–651 (1986).
[CrossRef]

Iwatsuki, K.

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4, 645–651 (1986).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
[CrossRef]

Jin, W.

Jin, Z.

H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–3344 (2012).
[CrossRef]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

H. Ma, X. Chang, H. Mao, and Z. Jin, “Laser frequency noise limited sensitivity in a resonator optic gyroscope,” Proceedings of 15th Opto-Electronics and Communications Conference (OECC) (IEEE, 2010), Vol. 8P-70, pp. 706–707.

Kim, H. K.

Kino, G. S.

Lawrence, A. W.

A. W. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” in Proceedings of the Navigation National Technical Meeting (The Institute of Navigation, 1990), pp. 161–166.

A. W. Lawrence, “The micro-optics gyro,” in Symposium on Gyro Technology, Stuttgart, 1983.

Lefevre, H. C.

Lei, M.

L. Feng, M. Lei, Y. Zhi, and J. Wang, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
[CrossRef]

M. Lei, L. Feng, Y. Zhi, H. Liu, J. Wang, X. Ren, and N. Su, “Current modulation technique used in resonator micro-optic gyro,” Appl. Opt. 52, 307–313 (2013).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Liu, H.

Ma, H.

H. Ma, X. Yu, and Z. Jin, “Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers,” Opt. Lett. 37, 3342–3344 (2012).
[CrossRef]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

H. Ma, X. Chang, H. Mao, and Z. Jin, “Laser frequency noise limited sensitivity in a resonator optic gyroscope,” Proceedings of 15th Opto-Electronics and Communications Conference (OECC) (IEEE, 2010), Vol. 8P-70, pp. 706–707.

Mao, H.

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

H. Ma, X. Chang, H. Mao, and Z. Jin, “Laser frequency noise limited sensitivity in a resonator optic gyroscope,” Proceedings of 15th Opto-Electronics and Communications Conference (OECC) (IEEE, 2010), Vol. 8P-70, pp. 706–707.

Maseeh, F.

C. Monovoukas, A. K. Swiechi, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” Proc. SPIE 3936, 293–300 (2000).
[CrossRef]

Mead, D.

S. J. Sanders, L. K. Strandjord, and D. Mead, “Fiber optic gyro technology trends—a Honeywell perspective,” Proc. IEEE 1, 5–8 (2002).

Monovoukas, C.

C. Monovoukas, A. K. Swiechi, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” Proc. SPIE 3936, 293–300 (2000).
[CrossRef]

Ren, X.

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

Sanders, S. J.

S. J. Sanders, L. K. Strandjord, and D. Mead, “Fiber optic gyro technology trends—a Honeywell perspective,” Proc. IEEE 1, 5–8 (2002).

Shaw, H. J.

Shupe, D. M.

Strandjord, L. K.

S. J. Sanders, L. K. Strandjord, and D. Mead, “Fiber optic gyro technology trends—a Honeywell perspective,” Proc. IEEE 1, 5–8 (2002).

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

Su, N.

Suzuki, K.

Swiechi, A. K.

C. Monovoukas, A. K. Swiechi, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” Proc. SPIE 3936, 293–300 (2000).
[CrossRef]

Takiguchi, K.

Vlasov, Y.

Y. Vlasov, W. Green, M. William, and F. Xia, “High-throughput silicon nanophotonic wavelength insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Wang, J.

Wang, X.

Whalen, A. D.

A. D. Whalen, Detection of Signal in Noise (Academic, 1971).

William, M.

Y. Vlasov, W. Green, M. William, and F. Xia, “High-throughput silicon nanophotonic wavelength insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Xia, F.

Y. Vlasov, W. Green, M. William, and F. Xia, “High-throughput silicon nanophotonic wavelength insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Ying, D.

D. Ying, M. S. Demokan, X. Zhang, and W. Jin, “Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation,” Appl. Opt. 49, 529–535 (2010).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

Yu, H.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Yu, X.

Zarinetchi, F.

Zhang, C.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Zhang, X.

Zhi, Y.

Zhou, Z.

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Appl. Opt. (5)

Chin. Phys. Lett. (2)

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “Waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

IEEE Aerosp. Electron. Syst. Mag. (1)

S. Emge and S. Bennett, “Reduced minimum configuration fiber optic gyro for land navigation applications,” IEEE Aerosp. Electron. Syst. Mag. 12(4), 18–21 (1997).
[CrossRef]

J. Lightwave Technol. (4)

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Kerr effect in an optical passive ring-resonator gyro,” J. Lightwave Technol. 4, 645–651 (1986).
[CrossRef]

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

K. Suzuki, K. Takiguchi, and K. Hotate, “Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit,” J. Lightwave Technol. 18, 66–72 (2000).
[CrossRef]

S. Blin, H. K. Kim, M. J. Digonnet, and G. S. Kino, “Reduced thermal sensitivity of a fiber optic gyroscope using an air-core photonic-bandgap fiber,” J. Lightwave Technol. 25, 861–865 (2007).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov, W. Green, M. William, and F. Xia, “High-throughput silicon nanophotonic wavelength insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Opt. Commun. (1)

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

Opt. Eng. (1)

L. Hong, C. Zhang, L. Feng, M. Lei, and H. Yu, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. IEEE (1)

S. J. Sanders, L. K. Strandjord, and D. Mead, “Fiber optic gyro technology trends—a Honeywell perspective,” Proc. IEEE 1, 5–8 (2002).

Proc. SPIE (4)

K. Hotate, “Passive and active resonator fiber optic gyros,” Proc. SPIE 2895, 68–78 (1996).
[CrossRef]

C. Monovoukas, A. K. Swiechi, and F. Maseeh, “Integrated optical gyroscopes offering low cost, small size and vibration immunity,” Proc. SPIE 3936, 293–300 (2000).
[CrossRef]

K. Hotate, X. Wang, and Z. He, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Resonator fiber optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1991).
[CrossRef]

Other (5)

H. Ma, X. Chang, H. Mao, and Z. Jin, “Laser frequency noise limited sensitivity in a resonator optic gyroscope,” Proceedings of 15th Opto-Electronics and Communications Conference (OECC) (IEEE, 2010), Vol. 8P-70, pp. 706–707.

A. D. Whalen, Detection of Signal in Noise (Academic, 1971).

A. W. Lawrence, “The micro-optics gyro,” in Symposium on Gyro Technology, Stuttgart, 1983.

A. W. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” in Proceedings of the Navigation National Technical Meeting (The Institute of Navigation, 1990), pp. 161–166.

H. C. Lefevre, The Fiber-Optic Gyroscope (National Defence Industry, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic configuration of the RIOG. ISO, isolator; IOM, integrated optical modulator; PM1 and PM2, phase modulators; C1, C2, C3, couplers; IOR, integrated optical resonator; PD1 and PD2, photodetectors.

Fig. 2.
Fig. 2.

Effect of intensity variation on the output of the RIOG.

Fig. 3.
Fig. 3.

(a) Relationship between the amplitude of the output square waveforms and frequency bias with different light intensities input of the IOR. (b) Relationship between the light intensity input of the IOR and the slope at the linear region near the resonant point.

Fig. 4.
Fig. 4.

(a) Relationship between the amplitude of the output square waveforms and the light intensity input of the IOR with different values of zero bias. (b) Relationship between the amplitude of the output square waveforms and the zero bias when I0=70μW.

Fig. 5.
Fig. 5.

Intensity variation error model.

Fig. 6.
Fig. 6.

Sample of resonator.

Fig. 7.
Fig. 7.

Test result of intensity variation of fiber laser measured by power meter.

Fig. 8.
Fig. 8.

Locking process of the RIOG detected at PDs.

Fig. 9.
Fig. 9.

Experimental setup of the intensity variation noise.

Fig. 10.
Fig. 10.

Experimental results of the bias stability with different equivalent rotation rates.

Tables (1)

Tables Icon

Table 1. Relationship between Frequency of the Sawtooth Waveform and Equivalent Rotation Rate

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ID(Δf)=I0(1αC)ρ{C02C02+(ΔffFM)2C02C02+(ΔffFM)2},
C0=(11αLCbar1αceΔωτ)·FSR·(2π1αLCbar1αceΔωτ)1
KΔf=6.39×108I0.
ID=4AKΔfnλLΩbias,
σI0=σIlaserI0Ilaser,
σID=6.39×108×σI0×4AnλL×π180×Ωbias,
K=IDΩ=6.39×108×I0×4AnλL×π180.
Ωlaser=σIDKN=σIlaserΩbiasIlaserN,
4AnλLΩsaw=2Vpp_sawfsawV2π,
Ωsaw=nλL2Afsaw.

Metrics