Abstract

The nonplanar four-frequency differential laser gyro (NFFDLG, also called ZLG in the United States) has many advantages, such as the absence of mechanical noise, a whole solid state, high stability of scale factor, and no time delay. Because of its excellent performance, NFFDLG is currently the subject of research. In this paper, the error induced by the thermal relaxation effect is investigated both theoretically and experimentally, and some methods and conclusions that could restrain this error effectively are proposed. The experiment data confirm reliably that NFFDLG has a thermal relaxation effect error during overturning. At the same time, it is pointed out that the error can be minimized by reducing the stop interval. Furthermore, since the sum frequency could be affected more seriously by the overturning thermal relaxation effect than the difference frequency could, the former one can be used as one more sensitive condition in actual applications. As far as we know, the overturning thermal relaxation effect was first investigated in China, which is even not mentioned publicly.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator ring laser gyroscopes and their applications [EB/OL],” Northrop Grumman Corporation Website, 2000, http://www.northropgrumman.com.
  2. G. J. Martin, S. C. Gillespie, and C. H. Volk, “The Litton 11 cm triaxial zero-lock gyro,” in IEEE Position Location and Navigation Symposium (IEEE, 1996), pp. 49–55.
  3. G. J. Martin, S. C. Gillespie, and H. Volk, “Small ZLG Triax technology,” AIAA-1996-3710, 1996.
  4. C. Lennon and T. Richmond, “LN100S-common optical payload and bus gyro reference assembly,” J. Guid. Control 107, 425–440 (2001).
  5. “LN-100G inertial navigation system with embedded GPS[EB/OL],” http://www.northropgrumman.com/Capabilities/LN100GInertialNavigationSystem .
  6. Northrop Grumann Inc., “LN-100LG launch and reentry GPS inertial navigation system[EB/OL].”
  7. H. Rice, L. Mendelsohn, R. Aarons, and D. Mazzola, “Next generation marine precision navigation system,” in IEEE 2000 Position Location and Navigation Symposium (IEEE, 2000), pp. 200–206.

2001

C. Lennon and T. Richmond, “LN100S-common optical payload and bus gyro reference assembly,” J. Guid. Control 107, 425–440 (2001).

Aarons, R.

H. Rice, L. Mendelsohn, R. Aarons, and D. Mazzola, “Next generation marine precision navigation system,” in IEEE 2000 Position Location and Navigation Symposium (IEEE, 2000), pp. 200–206.

Gillespie, S. C.

G. J. Martin, S. C. Gillespie, and H. Volk, “Small ZLG Triax technology,” AIAA-1996-3710, 1996.

G. J. Martin, S. C. Gillespie, and C. H. Volk, “The Litton 11 cm triaxial zero-lock gyro,” in IEEE Position Location and Navigation Symposium (IEEE, 1996), pp. 49–55.

C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator ring laser gyroscopes and their applications [EB/OL],” Northrop Grumman Corporation Website, 2000, http://www.northropgrumman.com.

Lennon, C.

C. Lennon and T. Richmond, “LN100S-common optical payload and bus gyro reference assembly,” J. Guid. Control 107, 425–440 (2001).

Mark, J. G.

C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator ring laser gyroscopes and their applications [EB/OL],” Northrop Grumman Corporation Website, 2000, http://www.northropgrumman.com.

Martin, G. J.

G. J. Martin, S. C. Gillespie, and C. H. Volk, “The Litton 11 cm triaxial zero-lock gyro,” in IEEE Position Location and Navigation Symposium (IEEE, 1996), pp. 49–55.

G. J. Martin, S. C. Gillespie, and H. Volk, “Small ZLG Triax technology,” AIAA-1996-3710, 1996.

Mazzola, D.

H. Rice, L. Mendelsohn, R. Aarons, and D. Mazzola, “Next generation marine precision navigation system,” in IEEE 2000 Position Location and Navigation Symposium (IEEE, 2000), pp. 200–206.

Mendelsohn, L.

H. Rice, L. Mendelsohn, R. Aarons, and D. Mazzola, “Next generation marine precision navigation system,” in IEEE 2000 Position Location and Navigation Symposium (IEEE, 2000), pp. 200–206.

Rice, H.

H. Rice, L. Mendelsohn, R. Aarons, and D. Mazzola, “Next generation marine precision navigation system,” in IEEE 2000 Position Location and Navigation Symposium (IEEE, 2000), pp. 200–206.

Richmond, T.

C. Lennon and T. Richmond, “LN100S-common optical payload and bus gyro reference assembly,” J. Guid. Control 107, 425–440 (2001).

Tazartes, D. A.

C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator ring laser gyroscopes and their applications [EB/OL],” Northrop Grumman Corporation Website, 2000, http://www.northropgrumman.com.

Volk, C. H.

C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator ring laser gyroscopes and their applications [EB/OL],” Northrop Grumman Corporation Website, 2000, http://www.northropgrumman.com.

G. J. Martin, S. C. Gillespie, and C. H. Volk, “The Litton 11 cm triaxial zero-lock gyro,” in IEEE Position Location and Navigation Symposium (IEEE, 1996), pp. 49–55.

Volk, H.

G. J. Martin, S. C. Gillespie, and H. Volk, “Small ZLG Triax technology,” AIAA-1996-3710, 1996.

J. Guid. Control

C. Lennon and T. Richmond, “LN100S-common optical payload and bus gyro reference assembly,” J. Guid. Control 107, 425–440 (2001).

Other

“LN-100G inertial navigation system with embedded GPS[EB/OL],” http://www.northropgrumman.com/Capabilities/LN100GInertialNavigationSystem .

Northrop Grumann Inc., “LN-100LG launch and reentry GPS inertial navigation system[EB/OL].”

H. Rice, L. Mendelsohn, R. Aarons, and D. Mazzola, “Next generation marine precision navigation system,” in IEEE 2000 Position Location and Navigation Symposium (IEEE, 2000), pp. 200–206.

C. H. Volk, S. C. Gillespie, J. G. Mark, and D. A. Tazartes, “Multioscillator ring laser gyroscopes and their applications [EB/OL],” Northrop Grumman Corporation Website, 2000, http://www.northropgrumman.com.

G. J. Martin, S. C. Gillespie, and C. H. Volk, “The Litton 11 cm triaxial zero-lock gyro,” in IEEE Position Location and Navigation Symposium (IEEE, 1996), pp. 49–55.

G. J. Martin, S. C. Gillespie, and H. Volk, “Small ZLG Triax technology,” AIAA-1996-3710, 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic diagram of overturning experiment in which the gain region is upright to the ground.

Fig. 2.
Fig. 2.

Schematic diagram of the horizontal overturning (I).

Fig. 3.
Fig. 3.

Schematic diagram of the horizontal overturning (II).

Fig. 4.
Fig. 4.

Photo of the overturning experiments.

Fig. 5.
Fig. 5.

Data curve of the vertical overturning (with 30 min interval).

Fig. 6.
Fig. 6.

Data curve of the horizontal overturning (I) (with 30 min interval).

Fig. 7.
Fig. 7.

Data curve of the horizontal overturning (II) (with 30 min interval).

Fig. 8.
Fig. 8.

Data curve of the vertical overturning (with 6 min interval).

Fig. 9.
Fig. 9.

Data curve of the horizontal overturning (I) (with 6 min interval).

Fig. 10.
Fig. 10.

Drift data and the sum frequency data curve of the horizontal overturning (I) (with 6 min interval).

Tables (2)

Tables Icon

Table 1. Calculated Data of Overturning Experiments (with 30 min Interval)

Tables Icon

Table 2. Calculated Data of Overturning Experiments (with 6 min Interval)

Metrics