Abstract

We present a microstructure-based dual-core dispersion-compensating fiber (DCF) design for dispersion compensation in long-haul optical communication links. The design has been conceptualized by combining the all-solid dual-core DCF and dispersion-compensating photonic crystal fiber. The fiber design has been analyzed numerically by using a full vectorial finite difference time domain method. We propose a fiber design for narrowband as well as broadband dispersion compensation. In the narrowband DCF design, the fiber exhibits very large negative dispersion of around −42,000  ps nm−1 km−1 and a large mode area of 67  μm2. The effects of varying different structural parameters on the dispersion characteristics as well as on the trade-off between full width at half-maximum and dispersion have been investigated. For broadband DCF design, a dispersion value between −860  ps nm−1 km−1 and −200  ps nm−1 km−1 is obtained for the entire spectral range of the C band.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
    [CrossRef]
  2. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
    [CrossRef]
  3. J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
    [CrossRef]
  4. K. Pande and B. P. Pal, “Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers,” Appl. Opt. 42, 3785–3791 (2003).
    [CrossRef]
  5. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. Jorgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566–3579 (2005).
    [CrossRef]
  6. F. Gérôme, J. Auguste, J. Maury, J. Blondy, and J. Marcou, “Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber,” J. Lightwave Technol. 24, 442–448 (2006).
    [CrossRef]
  7. V. Rastogi, R. Kumar, and A. Kumar, “Large effective area all-solid dispersion compensating fiber,” J. Opt. 13, 125707 (2011).
    [CrossRef]
  8. T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
    [CrossRef]
  9. L. P. Shen, W.-P. Huang, and S. S. Jian, “Design of photonic crystal fibers for dispersion-related applications,” J. Lightwave Technol. 21, 1644–1651 (2003).
    [CrossRef]
  10. R. K. Sinha and S. K. Varshney, “Dispersion properties of photonic crystal fibers,” Microw. Opt. Technol. Lett. 37, 129–132 (2003).
    [CrossRef]
  11. Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
    [CrossRef]
  12. A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13, 627–635 (2005).
    [CrossRef]
  13. S. Yang, Y. Zhang, L. He, and S. Xie, “Broadband dispersion-compensating photonic crystal fiber,” Opt. Lett. 31, 2830–2832 (2006).
    [CrossRef]
  14. X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47, 5190–5196 (2008).
    [CrossRef]
  15. B. Dabas and R. K. Sinha, “Dispersion characteristics of hexagonal and square lattice chalcogenide As2Se2 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
    [CrossRef]
  16. G. Ouyang, Y. Xu, and A. Yariv, “Theoretical study on dispersion compensation in air-core Bragg fibers,” Opt. Express 10, 899–908 (2002).
    [CrossRef]
  17. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by model interactions in OmniGuide fibers,” Opt. Express 11, 1175–1196 (2003).
    [CrossRef]
  18. F. Gérôme, S. Février, A. Pryamikov, J. Auguste, R. Jamier, J. Blondy, M. Likhachev, M. Bubnov, S. Semjonov, and E. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett. 32, 1208–1210 (2007).
    [CrossRef]
  19. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
    [CrossRef]
  20. A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
    [CrossRef]
  21. S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
    [CrossRef]
  22. S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
    [CrossRef]
  23. G. Lin, X. Dong, and S. Juan, “Design and analysis of the high-order mode dispersion compensating fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 798618.
  24. A. Peer, G. Prabhakar, V. Rastogi, and A. Kumar, “A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper WPo.24.
  25. J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000).
    [CrossRef]
  26. V. Rastogi and K. S. Chiang, “Holey optical fiber with circularly distributed holes analyzed by the radial effective-index method,” Opt. Lett. 28, 2449–2451 (2003).
    [CrossRef]
  27. J.-S. Chiang and T.-L. Wu, “Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF),” Opt. Commun. 258, 170–176 (2006).
    [CrossRef]
  28. T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.
  29. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  30. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

2011 (1)

V. Rastogi, R. Kumar, and A. Kumar, “Large effective area all-solid dispersion compensating fiber,” J. Opt. 13, 125707 (2011).
[CrossRef]

2010 (1)

B. Dabas and R. K. Sinha, “Dispersion characteristics of hexagonal and square lattice chalcogenide As2Se2 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (3)

2005 (2)

2004 (1)

Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

2003 (5)

2002 (3)

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

G. Ouyang, Y. Xu, and A. Yariv, “Theoretical study on dispersion compensation in air-core Bragg fibers,” Opt. Express 10, 899–908 (2002).
[CrossRef]

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

2001 (1)

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

2000 (3)

J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
[CrossRef]

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

1996 (1)

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

1994 (1)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

An, L.

Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Auguste, J.

Auguste, J. L.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Auguste, J.-L.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Blondy, J.

Blondy, J. M.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Blondy, J.-M.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Boivin, L.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Brownlow, D.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Bubnov, M.

Chiang, J.-S.

J.-S. Chiang and T.-L. Wu, “Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF),” Opt. Commun. 258, 170–176 (2006).
[CrossRef]

Chiang, K. S.

Clapeau, M.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Cowsar, L. C.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Dabas, B.

B. Dabas and R. K. Sinha, “Dispersion characteristics of hexagonal and square lattice chalcogenide As2Se2 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

Danziger, Y.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
[CrossRef]

Dianov, E.

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Dimarello, F.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

Dong, X.

G. Lin, X. Dong, and S. Juan, “Design and analysis of the high-order mode dispersion compensating fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 798618.

Dussardier, B.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Edvold, B.

Engeness, T. D.

Fan, C.

Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Février, S.

Fink, Y.

Fishteyn, M.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Fleming, J.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

Garrett, L. D.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
[CrossRef]

Gérôme, F.

Ghalmi, S.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

Ghatak, A. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
[CrossRef]

Goyal, I. C.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Gruner-Nielsen, L.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Grüner-Nielsen, L.

He, L.

Hirooka, T.

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.

Hou, L.

Hou, Z.

Huang, W.-P.

Huff, R. G.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Huttunen, A.

Ibanescu, M.

Ishii, F.

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.

Jacobs, S.

Jakobsen, D.

Jamier, R.

Jian, S. S.

Jindal, R.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Johnson, S. G.

Jorgensen, C.

Jorgensen, L.

Juan, S.

G. Lin, X. Dong, and S. Juan, “Design and analysis of the high-order mode dispersion compensating fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 798618.

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Kristensen, P.

Kumar, A.

V. Rastogi, R. Kumar, and A. Kumar, “Large effective area all-solid dispersion compensating fiber,” J. Opt. 13, 125707 (2011).
[CrossRef]

A. Peer, G. Prabhakar, V. Rastogi, and A. Kumar, “A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper WPo.24.

Kumar, R.

V. Rastogi, R. Kumar, and A. Kumar, “Large effective area all-solid dispersion compensating fiber,” J. Opt. 13, 125707 (2011).
[CrossRef]

Levy, U.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
[CrossRef]

Li, C.

J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000).
[CrossRef]

Li, S.

Likhachev, M.

Lin, G.

G. Lin, X. Dong, and S. Juan, “Design and analysis of the high-order mode dispersion compensating fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 798618.

Liu, Z.

Marcou, J.

F. Gérôme, J. Auguste, J. Maury, J. Blondy, and J. Marcou, “Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber,” J. Lightwave Technol. 24, 442–448 (2006).
[CrossRef]

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Maury, J.

F. Gérôme, J. Auguste, J. Maury, J. Blondy, and J. Marcou, “Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber,” J. Lightwave Technol. 24, 442–448 (2006).
[CrossRef]

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Mikkelsen, B.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Monberg, E.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

Monnom, G.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Nakazawa, M.

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.

Ni, Y.

Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Ostrowsky, D. B.

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Ouyang, G.

Pal, B. P.

K. Pande and B. P. Pal, “Design optimization of a dual-core dispersion-compensating fiber with a high figure of merit and a large effective area for dense wavelength-division multiplexed transmission through standard G.655 fibers,” Appl. Opt. 42, 3785–3791 (2003).
[CrossRef]

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

Palai, P.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Pálsdóttir, B.

Pande, K.

Peer, A.

A. Peer, G. Prabhakar, V. Rastogi, and A. Kumar, “A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper WPo.24.

Peng, J.

Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Prabhakar, G.

A. Peer, G. Prabhakar, V. Rastogi, and A. Kumar, “A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper WPo.24.

Pryamikov, A.

Ramachandran, S.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Rastogi, V.

V. Rastogi, R. Kumar, and A. Kumar, “Large effective area all-solid dispersion compensating fiber,” J. Opt. 13, 125707 (2011).
[CrossRef]

V. Rastogi and K. S. Chiang, “Holey optical fiber with circularly distributed holes analyzed by the radial effective-index method,” Opt. Lett. 28, 2449–2451 (2003).
[CrossRef]

A. Peer, G. Prabhakar, V. Rastogi, and A. Kumar, “A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper WPo.24.

Raybon, G.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Reed, W.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

Reed, W. A.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Russel, J.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Semjonov, S.

Shen, L. P.

Sinha, R. K.

B. Dabas and R. K. Sinha, “Dispersion characteristics of hexagonal and square lattice chalcogenide As2Se2 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

R. K. Sinha and S. K. Varshney, “Dispersion properties of photonic crystal fibers,” Microw. Opt. Technol. Lett. 37, 129–132 (2003).
[CrossRef]

Skorobogatiy, M.

Song, J.

J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000).
[CrossRef]

St, P.

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

Thyagarajan, K.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Törmä, P.

Tur, M.

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
[CrossRef]

Ueda, K.

J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000).
[CrossRef]

Varshney, R. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Varshney, S. K.

R. K. Sinha and S. K. Varshney, “Dispersion properties of photonic crystal fibers,” Microw. Opt. Technol. Lett. 37, 129–132 (2003).
[CrossRef]

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Wandel, M.

Wang, Z.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

Wei, D.

Weisberg, O.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Wisk, P.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Wu, T.-L.

J.-S. Chiang and T.-L. Wu, “Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF),” Opt. Commun. 258, 170–176 (2006).
[CrossRef]

Xie, S.

Xu, J.

J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000).
[CrossRef]

Xu, Y.

Yajima, T.

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.

Yamamoto, J.

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.

Yan, M.

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

Yan, M. F.

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Yang, S.

Yariv, A.

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

Yoshida, M.

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.

Zhang, Y.

Zhao, X.

Zhou, G.

Appl. Opt. (2)

Electron. Lett. (3)

J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, “−1800  ps(nm km) chromatic dispersion at 1.55 μm in dual concentric core fibre,” Electron. Lett. 36, 1689–1691 (2000).
[CrossRef]

A. H. Gnauck, L. D. Garrett, Y. Danziger, U. Levy, and M. Tur, “Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre,” Electron. Lett. 36, 1946–1947 (2000).
[CrossRef]

S. Ghalmi, S. Ramachandran, E. Monberg, Z. Wang, M. Yan, F. Dimarello, W. Reed, P. Wisk, and J. Fleming, “Low-loss, all-fibre higher-order-mode dispersion compensators for lumped or multi-span compensation,” Electron. Lett. 38, 1507–1508 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. Ramachandran, B. Mikkelsen, L. C. Cowsar, M. F. Yan, G. Raybon, L. Boivin, M. Fishteyn, W. A. Reed, P. Wisk, D. Brownlow, R. G. Huff, and L. Gruner-Nielsen, “All-fiber grating-based higher order mode dispersion compensator for broad-band compensation and 1000 km transmission at 40  Gb/s,” IEEE Photon. Technol. Lett. 13, 632–634 (2001).
[CrossRef]

Y. Ni, L. An, J. Peng, and C. Fan, “Dual-core photonic crystal fiber for dispersion compensation,” IEEE Photon. Technol. Lett. 16, 1516–1518 (2004).
[CrossRef]

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St, and J. Russel, “Dispersion compensation using single material fibers,” IEEE Photon. Technol. Lett. 11, 674–676 (1999).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

J. Lightwave Technol. (4)

J. Opt. (1)

V. Rastogi, R. Kumar, and A. Kumar, “Large effective area all-solid dispersion compensating fiber,” J. Opt. 13, 125707 (2011).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

R. K. Sinha and S. K. Varshney, “Dispersion properties of photonic crystal fibers,” Microw. Opt. Technol. Lett. 37, 129–132 (2003).
[CrossRef]

Opt. Commun. (3)

J. Xu, J. Song, C. Li, and K. Ueda, “Cylindrically symmetrical hollow fiber,” Opt. Commun. 182, 343–348 (2000).
[CrossRef]

B. Dabas and R. K. Sinha, “Dispersion characteristics of hexagonal and square lattice chalcogenide As2Se2 glass photonic crystal fiber,” Opt. Commun. 283, 1331–1337 (2010).
[CrossRef]

J.-S. Chiang and T.-L. Wu, “Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF),” Opt. Commun. 258, 170–176 (2006).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, “Conception, realization, and characterization of a very high negative chromatic dispersion fiber,” Opt. Fiber Technol. 8, 89–105 (2002).
[CrossRef]

Opt. Lett. (3)

Other (4)

T. Yajima, J. Yamamoto, F. Ishii, T. Hirooka, M. Yoshida, and M. Nakazawa, “Low loss photonic crystal fiber fabricated by slurry casting method,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CTh3G.1.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

G. Lin, X. Dong, and S. Juan, “Design and analysis of the high-order mode dispersion compensating fiber,” in Passive Components and Fiber-Based Devices VII, P. Shum, ed., Vol. 7986 of Proceedings of SPIE-OSA (Optical Society of America, 2010), paper 798618.

A. Peer, G. Prabhakar, V. Rastogi, and A. Kumar, “A microstructured dual-core dispersion compensating fiber design for large-mode-area and high-negative dispersion,” in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper WPo.24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics