Abstract

Piezoelectric PbZr0.52Ti0.48O3 (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1cm2 electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26μC/cm2 with coercive fields of 33kV/cm. The transverse piezoelectric coefficient was as high as 6.1±0.6C/m2. To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
    [CrossRef]
  2. P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
    [CrossRef]
  3. R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011).
    [CrossRef]
  4. P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
    [CrossRef]
  5. P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review,” J. Micromech. Microeng. 10, 136–146 (2000).
    [CrossRef]
  6. I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007).
    [CrossRef]
  7. E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
    [CrossRef]
  8. N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
    [CrossRef]
  9. F. Calame and P. Muralt, “Growth and properties of gradient free sol-gel lead zirconate titanate thin films,” Appl. Phys. Lett. 90, 062907 (2007).
    [CrossRef]
  10. C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1−xO3 thin films,” J. Mater. Res. 9, 1728–1733 (1994).
    [CrossRef]
  11. Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films,” J. Appl. Phys. 86, 1662–1669 (1999).
    [CrossRef]
  12. B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
    [CrossRef]
  13. K. Amanuma, T. Hase, and Y. Miyasaka, “Crystallization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure,” Appl. Phys. Lett. 65, 3140–3142 (1994).
    [CrossRef]
  14. A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
    [CrossRef]
  15. C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin-films by a seeding process,” J. Mater. Res. 8, 339–344 (1993).
    [CrossRef]
  16. R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
    [CrossRef]
  17. A. Karuppasamy and A. Subrahmanyam, “Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas,” J. Appl. Phys. 101, 064318 (2007).
    [CrossRef]
  18. H. Hu, C. J. Peng, and S. B. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin-films,” Thin Solid Films 223, 327–333 (1993).
    [CrossRef]
  19. S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
    [CrossRef]
  20. R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.
  21. K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).
  22. K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
    [CrossRef]
  23. S. M. Nam and T. Tsurumi, “In situ epitaxial growth of lead zirconate titanate films by bias sputtering at high RF power,” Jpn. J. Appl. Phys. 43, 2672–2676 (2004).
    [CrossRef]
  24. I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997).
    [CrossRef]
  25. K. Sreenivas and M. Sayer, “Characterization of Pb(Zr,Ti)O3 thin-films deposited from multi-element targets,” J. Appl. Phys. 64, 1484–1493 (1988).
    [CrossRef]
  26. L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, 1970).
  27. D. J. Kester, and R. Messier, “Predicting negative-ion resputtering in thin-films,” J. Vac. Sci. Technol. A 4, 496–499 (1986).
    [CrossRef]
  28. M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989).
    [CrossRef]
  29. M. Migliuolo, R. M. Belan, and J. A. Brewer, “Absence of negative-ion effects during on-axis single target sputtering of Y-Ba-Cu-O thin-films on Si (100),” Appl. Phys. Lett. 56, 2572–2574 (1990).
    [CrossRef]
  30. A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994).
    [CrossRef]
  31. K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986).
    [CrossRef]
  32. A. Grasmarti and J. A. Vallesabarca, “Slowing down and thermalization of sputtered particle fluxes—energy-distributions,” J. Appl. Phys. 54, 1071–1075 (1983).
    [CrossRef]
  33. G. L. Brennecka and B. A. Tuttle, “Fabrication of ultrathin film capacitors by chemical solution deposition,” J. Mater. Res. 22, 2868–2874 (2007).
    [CrossRef]
  34. T. Tani and D. A. Payne, “Lead-oxide coatings on sol gel-derived lead lanthanum zirconium titanate thin-layers for enhanced crystallization into the perovskite structure,” J. Am. Ceram. Soc. 77, 1242–1248 (1994).
    [CrossRef]
  35. E. K. W. Goo, R. K. Mishra, and G. Thomas, “Transmission electron-microscopy of Pb(Zr0.52Ti0.48)O3,” J. Am. Ceram. Soc. 64, 517–519 (1981).
    [CrossRef]
  36. K. H. Hardtl and H. Rau, “PbO vapour pressure in Pb(Ti1−xZrx)O3 system,” Solid State Commun. 7, 41–45 (1969).
    [CrossRef]
  37. A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).
  38. N. J. Donnelly and C. A. Randall, “Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements,” J. Appl. Phys. 109, 104107 (2011).
    [CrossRef]
  39. S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
    [CrossRef]
  40. B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.
  41. R. C. Keezer, D. L. Bowman, and J. H. Becker, “Electrical and optical properties of lead oxide single crystals,” J. Appl. Phys. 39, 2062–2066 (1968).
    [CrossRef]
  42. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic, 1971).
  43. A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991).
    [CrossRef]
  44. I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
    [CrossRef]
  45. G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
    [CrossRef]
  46. J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,” Sens. Actuators A 71, 133–138 (1998).
    [CrossRef]
  47. W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
    [CrossRef]
  48. SDRC I-DEAS, Now Siemens PLM Software, 5800 Granite Parkway Suite 600, Plano, TX 75024.

2011 (2)

R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011).
[CrossRef]

N. J. Donnelly and C. A. Randall, “Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements,” J. Appl. Phys. 109, 104107 (2011).
[CrossRef]

2010 (3)

P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
[CrossRef]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[CrossRef]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[CrossRef]

2009 (1)

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

2008 (2)

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
[CrossRef]

2007 (4)

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

F. Calame and P. Muralt, “Growth and properties of gradient free sol-gel lead zirconate titanate thin films,” Appl. Phys. Lett. 90, 062907 (2007).
[CrossRef]

A. Karuppasamy and A. Subrahmanyam, “Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas,” J. Appl. Phys. 101, 064318 (2007).
[CrossRef]

G. L. Brennecka and B. A. Tuttle, “Fabrication of ultrathin film capacitors by chemical solution deposition,” J. Mater. Res. 22, 2868–2874 (2007).
[CrossRef]

2006 (1)

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

2004 (2)

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

S. M. Nam and T. Tsurumi, “In situ epitaxial growth of lead zirconate titanate films by bias sputtering at high RF power,” Jpn. J. Appl. Phys. 43, 2672–2676 (2004).
[CrossRef]

2003 (1)

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

2000 (2)

P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review,” J. Micromech. Microeng. 10, 136–146 (2000).
[CrossRef]

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

1999 (1)

Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films,” J. Appl. Phys. 86, 1662–1669 (1999).
[CrossRef]

1998 (1)

J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,” Sens. Actuators A 71, 133–138 (1998).
[CrossRef]

1997 (2)

I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

1996 (1)

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

1994 (6)

K. Amanuma, T. Hase, and Y. Miyasaka, “Crystallization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure,” Appl. Phys. Lett. 65, 3140–3142 (1994).
[CrossRef]

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
[CrossRef]

C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1−xO3 thin films,” J. Mater. Res. 9, 1728–1733 (1994).
[CrossRef]

A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994).
[CrossRef]

T. Tani and D. A. Payne, “Lead-oxide coatings on sol gel-derived lead lanthanum zirconium titanate thin-layers for enhanced crystallization into the perovskite structure,” J. Am. Ceram. Soc. 77, 1242–1248 (1994).
[CrossRef]

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
[CrossRef]

1993 (2)

C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin-films by a seeding process,” J. Mater. Res. 8, 339–344 (1993).
[CrossRef]

H. Hu, C. J. Peng, and S. B. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin-films,” Thin Solid Films 223, 327–333 (1993).
[CrossRef]

1992 (1)

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

1991 (1)

A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991).
[CrossRef]

1990 (1)

M. Migliuolo, R. M. Belan, and J. A. Brewer, “Absence of negative-ion effects during on-axis single target sputtering of Y-Ba-Cu-O thin-films on Si (100),” Appl. Phys. Lett. 56, 2572–2574 (1990).
[CrossRef]

1989 (1)

M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989).
[CrossRef]

1988 (1)

K. Sreenivas and M. Sayer, “Characterization of Pb(Zr,Ti)O3 thin-films deposited from multi-element targets,” J. Appl. Phys. 64, 1484–1493 (1988).
[CrossRef]

1987 (1)

A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).

1986 (2)

D. J. Kester, and R. Messier, “Predicting negative-ion resputtering in thin-films,” J. Vac. Sci. Technol. A 4, 496–499 (1986).
[CrossRef]

K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986).
[CrossRef]

1983 (1)

A. Grasmarti and J. A. Vallesabarca, “Slowing down and thermalization of sputtered particle fluxes—energy-distributions,” J. Appl. Phys. 54, 1071–1075 (1983).
[CrossRef]

1981 (1)

E. K. W. Goo, R. K. Mishra, and G. Thomas, “Transmission electron-microscopy of Pb(Zr0.52Ti0.48)O3,” J. Am. Ceram. Soc. 64, 517–519 (1981).
[CrossRef]

1969 (1)

K. H. Hardtl and H. Rau, “PbO vapour pressure in Pb(Ti1−xZrx)O3 system,” Solid State Commun. 7, 41–45 (1969).
[CrossRef]

1968 (1)

R. C. Keezer, D. L. Bowman, and J. H. Becker, “Electrical and optical properties of lead oxide single crystals,” J. Appl. Phys. 39, 2062–2066 (1968).
[CrossRef]

Amanuma, K.

K. Amanuma, T. Hase, and Y. Miyasaka, “Crystallization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure,” Appl. Phys. Lett. 65, 3140–3142 (1994).
[CrossRef]

Baborowski, J.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

Becker, J. H.

R. C. Keezer, D. L. Bowman, and J. H. Becker, “Electrical and optical properties of lead oxide single crystals,” J. Appl. Phys. 39, 2062–2066 (1968).
[CrossRef]

Belan, R. M.

M. Migliuolo, R. M. Belan, and J. A. Brewer, “Absence of negative-ion effects during on-axis single target sputtering of Y-Ba-Cu-O thin-films on Si (100),” Appl. Phys. Lett. 56, 2572–2574 (1990).
[CrossRef]

Bloemhof, E.

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

Bowman, D. L.

R. C. Keezer, D. L. Bowman, and J. H. Becker, “Electrical and optical properties of lead oxide single crystals,” J. Appl. Phys. 39, 2062–2066 (1968).
[CrossRef]

Brennecka, G. L.

G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
[CrossRef]

G. L. Brennecka and B. A. Tuttle, “Fabrication of ultrathin film capacitors by chemical solution deposition,” J. Mater. Res. 22, 2868–2874 (2007).
[CrossRef]

Brewer, J. A.

M. Migliuolo, R. M. Belan, and J. A. Brewer, “Absence of negative-ion effects during on-axis single target sputtering of Y-Ba-Cu-O thin-films on Si (100),” Appl. Phys. Lett. 56, 2572–2574 (1990).
[CrossRef]

Brewer, L. N.

G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
[CrossRef]

Brooks, K.

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
[CrossRef]

Bunker, B. C.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

Calame, F.

F. Calame and P. Muralt, “Growth and properties of gradient free sol-gel lead zirconate titanate thin films,” Appl. Phys. Lett. 90, 062907 (2007).
[CrossRef]

Cameron, R.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Cantoni, M.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

Carim, A. H.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991).
[CrossRef]

Cheetham, A. K.

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
[CrossRef]

Cheng, H. G.

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

Cohen, L.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Cook, W. R.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic, 1971).

Croteau, A.

A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).

Cuomo, J. J.

A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994).
[CrossRef]

Davis, W.

P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
[CrossRef]

Davis, W. N.

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[CrossRef]

Desu, S. B.

C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1−xO3 thin films,” J. Mater. Res. 9, 1728–1733 (1994).
[CrossRef]

C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin-films by a seeding process,” J. Mater. Res. 8, 339–344 (1993).
[CrossRef]

Donnelly, N. J.

N. J. Donnelly and C. A. Randall, “Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements,” J. Appl. Phys. 109, 104107 (2011).
[CrossRef]

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

Doughty, D. H.

A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991).
[CrossRef]

Doyle, J. P.

A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994).
[CrossRef]

Dunn, S.

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

Eatough, M. O.

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Elvis, M.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Freeman, M.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

Fujii, S.

I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997).
[CrossRef]

Garino, T. J.

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Gentil, S.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

Glang, R.

L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, 1970).

Gleeson, H.

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

Goo, E. K. W.

E. K. W. Goo, R. K. Mishra, and G. Thomas, “Transmission electron-microscopy of Pb(Zr0.52Ti0.48)O3,” J. Am. Ceram. Soc. 64, 517–519 (1981).
[CrossRef]

Goodnow, D. C.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Gorenstein, P.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Grasmarti, A.

A. Grasmarti and J. A. Vallesabarca, “Slowing down and thermalization of sputtered particle fluxes—energy-distributions,” J. Appl. Phys. 54, 1071–1075 (1983).
[CrossRef]

Greve, D. W.

M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989).
[CrossRef]

Hardtl, K. H.

K. H. Hardtl and H. Rau, “PbO vapour pressure in Pb(Ti1−xZrx)O3 system,” Solid State Commun. 7, 41–45 (1969).
[CrossRef]

Hase, T.

K. Amanuma, T. Hase, and Y. Miyasaka, “Crystallization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure,” Appl. Phys. Lett. 65, 3140–3142 (1994).
[CrossRef]

Headley, T. J.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Hernandez, C. L.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

Hishinuma, Y.

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

Hu, H.

H. Hu, C. J. Peng, and S. B. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin-films,” Thin Solid Films 223, 327–333 (1993).
[CrossRef]

Huang, Z.

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films,” J. Appl. Phys. 86, 1662–1669 (1999).
[CrossRef]

Iijima, K.

K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986).
[CrossRef]

Ishikawa, M.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Jaffe, B.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic, 1971).

Jaffe, H.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic, 1971).

Jerius, D.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Juda, M.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

Kamada, T.

I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997).
[CrossRef]

Kamisawa, A.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Kanno, I.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997).
[CrossRef]

Karuppasamy, A.

A. Karuppasamy and A. Subrahmanyam, “Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas,” J. Appl. Phys. 101, 064318 (2007).
[CrossRef]

Keezer, R. C.

R. C. Keezer, D. L. Bowman, and J. H. Becker, “Electrical and optical properties of lead oxide single crystals,” J. Appl. Phys. 39, 2062–2066 (1968).
[CrossRef]

Kester, D. J.

D. J. Kester, and R. Messier, “Predicting negative-ion resputtering in thin-films,” J. Vac. Sci. Technol. A 4, 496–499 (1986).
[CrossRef]

Klissurska, R.

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
[CrossRef]

Kotera, H.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Krupanidhi, S. B.

H. Hu, C. J. Peng, and S. B. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin-films,” Thin Solid Films 223, 327–333 (1993).
[CrossRef]

Kunisawa, T.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Kwok, C. K.

C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1−xO3 thin films,” J. Mater. Res. 9, 1728–1733 (1994).
[CrossRef]

C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin-films by a seeding process,” J. Mater. Res. 8, 339–344 (1993).
[CrossRef]

Lamppa, D. L.

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Ledermann, N.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

Levine, B. M.

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

Liu, W.

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

Maissel, L. I.

L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, 1970).

Mamazza, R.

R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.

Mark, N. Y.

R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.

Martinez, S. L.

A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991).
[CrossRef]

Matsubara, S.

A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).

McClelland, R. S.

R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011).
[CrossRef]

Messier, R.

D. J. Kester, and R. Messier, “Predicting negative-ion resputtering in thin-films,” J. Vac. Sci. Technol. A 4, 496–499 (1986).
[CrossRef]

Michael, J.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

Migliuolo, M.

M. Migliuolo, R. M. Belan, and J. A. Brewer, “Absence of negative-ion effects during on-axis single target sputtering of Y-Ba-Cu-O thin-films on Si (100),” Appl. Phys. Lett. 56, 2572–2574 (1990).
[CrossRef]

M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989).
[CrossRef]

Mishra, R. K.

E. K. W. Goo, R. K. Mishra, and G. Thomas, “Transmission electron-microscopy of Pb(Zr0.52Ti0.48)O3,” J. Am. Ceram. Soc. 64, 517–519 (1981).
[CrossRef]

Miyasaka, Y.

K. Amanuma, T. Hase, and Y. Miyasaka, “Crystallization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure,” Appl. Phys. Lett. 65, 3140–3142 (1994).
[CrossRef]

A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).

Moses, P. J.

J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,” Sens. Actuators A 71, 133–138 (1998).
[CrossRef]

Mukati, K.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

Muralt, P.

F. Calame and P. Muralt, “Growth and properties of gradient free sol-gel lead zirconate titanate thin films,” Appl. Phys. Lett. 90, 062907 (2007).
[CrossRef]

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review,” J. Micromech. Microeng. 10, 136–146 (2000).
[CrossRef]

R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.

Murray, S. S.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

Nakamura, K.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Nam, S. M.

S. M. Nam and T. Tsurumi, “In situ epitaxial growth of lead zirconate titanate films by bias sputtering at high RF power,” Jpn. J. Appl. Phys. 43, 2672–2676 (2004).
[CrossRef]

Natarajan, S.

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
[CrossRef]

Osawa, A.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Ozawa, T.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Parish, C. M.

G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
[CrossRef]

Pawlaczyk, C.

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
[CrossRef]

Payne, D. A.

T. Tani and D. A. Payne, “Lead-oxide coatings on sol gel-derived lead lanthanum zirconium titanate thin-layers for enhanced crystallization into the perovskite structure,” J. Am. Ceram. Soc. 77, 1242–1248 (1994).
[CrossRef]

Peng, C. J.

H. Hu, C. J. Peng, and S. B. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin-films,” Thin Solid Films 223, 327–333 (1993).
[CrossRef]

Petre, R.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Piekarski, B. H.

R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.

Pignolet, A.

A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994).
[CrossRef]

Podgorski, W.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Polcawich, R. G.

R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.

Powell, C.

R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011).
[CrossRef]

Ramsey, B.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

Randall, C. A.

N. J. Donnelly and C. A. Randall, “Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements,” J. Appl. Phys. 109, 104107 (2011).
[CrossRef]

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

Rau, H.

K. H. Hardtl and H. Rau, “PbO vapour pressure in Pb(Ti1−xZrx)O3 system,” Solid State Commun. 7, 41–45 (1969).
[CrossRef]

Reaney, I. M.

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
[CrossRef]

Reid, P.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Reid, P. B.

P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
[CrossRef]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[CrossRef]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[CrossRef]

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

Reynolds, G. J.

R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.

Rodriguez, M. A.

G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
[CrossRef]

Roy, R. A.

A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994).
[CrossRef]

Roy, S. S.

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

Saha, T. T.

R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011).
[CrossRef]

Sameshima, K.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Sayer, M.

K. Sreenivas and M. Sayer, “Characterization of Pb(Zr,Ti)O3 thin-films deposited from multi-element targets,” J. Appl. Phys. 64, 1484–1493 (1988).
[CrossRef]

Schlesinger, T. E.

M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989).
[CrossRef]

Schwartz, D.

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Schwartz, D. A.

P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
[CrossRef]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[CrossRef]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[CrossRef]

Schwartz, R. W.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Seifert, A.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

Setter, N.

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
[CrossRef]

Shaw, C. P.

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

Shepard, J. F.

J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,” Sens. Actuators A 71, 133–138 (1998).
[CrossRef]

Shohata, N.

A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).

Speck, J. S.

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
[CrossRef]

Sreenivas, K.

K. Sreenivas and M. Sayer, “Characterization of Pb(Zr,Ti)O3 thin-films deposited from multi-element targets,” J. Appl. Phys. 64, 1484–1493 (1988).
[CrossRef]

Stamper, A. K.

M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989).
[CrossRef]

Subrahmanyam, A.

A. Karuppasamy and A. Subrahmanyam, “Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas,” J. Appl. Phys. 101, 064318 (2007).
[CrossRef]

Suu, K.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Suzuki, T.

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Takasu, H.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Takayama, R.

I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997).
[CrossRef]

K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986).
[CrossRef]

Tani, N.

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

Tani, T.

T. Tani and D. A. Payne, “Lead-oxide coatings on sol gel-derived lead lanthanum zirconium titanate thin-layers for enhanced crystallization into the perovskite structure,” J. Am. Ceram. Soc. 77, 1242–1248 (1994).
[CrossRef]

Thomas, G.

E. K. W. Goo, R. K. Mishra, and G. Thomas, “Transmission electron-microscopy of Pb(Zr0.52Ti0.48)O3,” J. Am. Ceram. Soc. 64, 517–519 (1981).
[CrossRef]

Thomas, J. M.

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
[CrossRef]

Tissot, R. J.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

Tomita, Y.

K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986).
[CrossRef]

Trolier-McKinstry, S.

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[CrossRef]

P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
[CrossRef]

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,” Sens. Actuators A 71, 133–138 (1998).
[CrossRef]

Tsurumi, T.

S. M. Nam and T. Tsurumi, “In situ epitaxial growth of lead zirconate titanate films by bias sputtering at high RF power,” Jpn. J. Appl. Phys. 43, 2672–2676 (2004).
[CrossRef]

Tuttle, B. A.

G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
[CrossRef]

G. L. Brennecka and B. A. Tuttle, “Fabrication of ultrathin film capacitors by chemical solution deposition,” J. Mater. Res. 22, 2868–2874 (2007).
[CrossRef]

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991).
[CrossRef]

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Ueda, I.

K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986).
[CrossRef]

Vallesabarca, J. A.

A. Grasmarti and J. A. Vallesabarca, “Slowing down and thermalization of sputtered particle fluxes—energy-distributions,” J. Appl. Phys. 54, 1071–1075 (1983).
[CrossRef]

Voigt, J. A.

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

Whatmore, R. W.

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films,” J. Appl. Phys. 86, 1662–1669 (1999).
[CrossRef]

Wilke, R. H. T.

P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
[CrossRef]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[CrossRef]

Wilkinson, A. P.

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
[CrossRef]

Xu, Z.

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

Yang, E. H.

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

Zender, T. J.

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

Zhang, Q.

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films,” J. Appl. Phys. 86, 1662–1669 (1999).
[CrossRef]

Zhang, S. J.

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

Zhang, W.

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

Zhang, W. W.

R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011).
[CrossRef]

Zhao, S.

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

Adv. Mater. (1)

G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A. Rodriguez, “Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films,” Adv. Mater. 20, 1407–1411 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

F. Calame and P. Muralt, “Growth and properties of gradient free sol-gel lead zirconate titanate thin films,” Appl. Phys. Lett. 90, 062907 (2007).
[CrossRef]

K. Amanuma, T. Hase, and Y. Miyasaka, “Crystallization behavior of sol-gel derived Pb(Zr,Ti)O3 thin films and the polarization switching effect on film microstructure,” Appl. Phys. Lett. 65, 3140–3142 (1994).
[CrossRef]

I. Kanno, S. Fujii, T. Kamada, and R. Takayama, “Piezoelectric properties of c-axis oriented Pb(Zr,Ti)O3 thin films,” Appl. Phys. Lett. 70, 1378–1380 (1997).
[CrossRef]

M. Migliuolo, A. K. Stamper, D. W. Greve, and T. E. Schlesinger, “Single target sputtering of superconducting YBa2Cu3O7−δ thin films on Si(100),” Appl. Phys. Lett. 54, 859–861 (1989).
[CrossRef]

M. Migliuolo, R. M. Belan, and J. A. Brewer, “Absence of negative-ion effects during on-axis single target sputtering of Y-Ba-Cu-O thin-films on Si (100),” Appl. Phys. Lett. 56, 2572–2574 (1990).
[CrossRef]

Chem. Mater. (1)

A. P. Wilkinson, J. S. Speck, A. K. Cheetham, S. Natarajan, and J. M. Thomas, “In-situ diffraction study of crystallization kinetics in PbZr1−xTixO3 (PZT, x=0.0, 0.55, 1.0),” Chem. Mater. 6, 750–754 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, “Development of deformable mirror composed of piezoelectric thin films for adaptive optics,” IEEE J. Quantum Electron. 13, 155–161 (2007).
[CrossRef]

Integr. Ferroelectr. (2)

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Lead content control of PLZT thin films prepared by RF magnetron sputtering,” Integr. Ferroelectr. 14, 59–68 (1997).
[CrossRef]

S. S. Roy, H. Gleeson, C. P. Shaw, R. W. Whatmore, Z. Huang, Q. Zhang, and S. Dunn, “Growth and characterisation of lead zirconate titanate (30/70) on indium tin oxide coated glass for oxide ferroelectric-liquid crystal display application,” Integr. Ferroelectr. 29, 189–213 (2000).
[CrossRef]

J. Am. Ceram. Soc. (4)

T. Tani and D. A. Payne, “Lead-oxide coatings on sol gel-derived lead lanthanum zirconium titanate thin-layers for enhanced crystallization into the perovskite structure,” J. Am. Ceram. Soc. 77, 1242–1248 (1994).
[CrossRef]

E. K. W. Goo, R. K. Mishra, and G. Thomas, “Transmission electron-microscopy of Pb(Zr0.52Ti0.48)O3,” J. Am. Ceram. Soc. 64, 517–519 (1981).
[CrossRef]

A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, “Microstructure of solution-processed lead zirconate titanate (PZT) thin-films,” J. Am. Ceram. Soc. 74, 1455–1458(1991).
[CrossRef]

I. M. Reaney, K. Brooks, R. Klissurska, C. Pawlaczyk, and N. Setter, “Use of transmission electron-microscopy for the characterization of rapid thermally annealed, solution-gel, lead-zirconate-titanate films,” J. Am. Ceram. Soc. 77, 1209–1216 (1994).
[CrossRef]

J. Appl. Phys. (8)

N. J. Donnelly and C. A. Randall, “Pb loss in Pb(Zr,Ti)O3 ceramics observed by in situ ionic conductivity measurements,” J. Appl. Phys. 109, 104107 (2011).
[CrossRef]

S. Zhao, S. J. Zhang, W. Liu, N. J. Donnelly, Z. Xu, and C. A. Randall, “Time dependent dc resistance degradation in lead-based perovskites: 0.7Pb(Mg1/3Nb2/3)O3─0.3PbTiO3,” J. Appl. Phys. 105, 053705 (2009).
[CrossRef]

R. C. Keezer, D. L. Bowman, and J. H. Becker, “Electrical and optical properties of lead oxide single crystals,” J. Appl. Phys. 39, 2062–2066 (1968).
[CrossRef]

K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, “Preparation of c-axis oriented PbTiO3 thin-films and their crystallographic, dielectric and pyroelectric properties,” J. Appl. Phys. 60, 361–367 (1986).
[CrossRef]

A. Grasmarti and J. A. Vallesabarca, “Slowing down and thermalization of sputtered particle fluxes—energy-distributions,” J. Appl. Phys. 54, 1071–1075 (1983).
[CrossRef]

K. Sreenivas and M. Sayer, “Characterization of Pb(Zr,Ti)O3 thin-films deposited from multi-element targets,” J. Appl. Phys. 64, 1484–1493 (1988).
[CrossRef]

Z. Huang, Q. Zhang, and R. W. Whatmore, “Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films,” J. Appl. Phys. 86, 1662–1669 (1999).
[CrossRef]

A. Karuppasamy and A. Subrahmanyam, “Studies on the room temperature growth of nanoanatase phase TiO2 thin films by pulsed dc magnetron with oxygen as sputter gas,” J. Appl. Phys. 101, 064318 (2007).
[CrossRef]

J. Mater. Res. (4)

B. A. Tuttle, T. J. Headley, B. C. Bunker, R. W. Schwartz, T. J. Zender, C. L. Hernandez, D. C. Goodnow, R. J. Tissot, J. Michael, and A. H. Carim, “Microstructural evolution of Pb(Zr,Ti)O3 thin films prepared by hybrid metallo-organic decomposition,” J. Mater. Res. 7, 1876–1882 (1992).
[CrossRef]

C. K. Kwok and S. B. Desu, “Low temperature perovskite formation of lead zirconate titanate thin-films by a seeding process,” J. Mater. Res. 8, 339–344 (1993).
[CrossRef]

C. K. Kwok and S. B. Desu, “Formation kinetics of PbZrxTi1−xO3 thin films,” J. Mater. Res. 9, 1728–1733 (1994).
[CrossRef]

G. L. Brennecka and B. A. Tuttle, “Fabrication of ultrathin film capacitors by chemical solution deposition,” J. Mater. Res. 22, 2868–2874 (2007).
[CrossRef]

J. Microelectromech. Syst. (1)

E. H. Yang, Y. Hishinuma, H. G. Cheng, S. Trolier-McKinstry, E. Bloemhof, and B. M. Levine, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst. 15, 1214–1225 (2006).
[CrossRef]

J. Micromech. Microeng. (1)

P. Muralt, “Ferroelectric thin films for micro-sensors and actuators: a review,” J. Micromech. Microeng. 10, 136–146 (2000).
[CrossRef]

J. Vac. Sci. Technol. A (2)

A. Pignolet, R. A. Roy, J. P. Doyle, and J. J. Cuomo, “Model of lead loss in Pb(MgxNb1−x)Oz ion-beam sputtered thin-films,” J. Vac. Sci. Technol. A 12, 2840–2845 (1994).
[CrossRef]

D. J. Kester, and R. Messier, “Predicting negative-ion resputtering in thin-films,” J. Vac. Sci. Technol. A 4, 496–499 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (3)

A. Croteau, S. Matsubara, Y. Miyasaka, and N. Shohata, “Ferroelectric Pb(Zr,Ti)O3 thin-films prepared by metal target sputtering,” Jpn. J. Appl. Phys. 26, 18–21 (1987).

K. Suu, A. Osawa, N. Tani, M. Ishikawa, K. Nakamura, T. Ozawa, K. Sameshima, A. Kamisawa, and H. Takasu, “Preparation of (Pb,La)(Zr,Ti)O3 ferroelectric films by RF sputtering on large substrate,” Jpn. J. Appl. Phys. 35, 4967–4971 (1996).

S. M. Nam and T. Tsurumi, “In situ epitaxial growth of lead zirconate titanate films by bias sputtering at high RF power,” Jpn. J. Appl. Phys. 43, 2672–2676 (2004).
[CrossRef]

Proc. SPIE (6)

P. Reid, R. Cameron, L. Cohen, M. Elvis, P. Gorenstein, D. Jerius, R. Petre, W. Podgorski, D. Schwartz, and W. Zhang, “Constellation-X to generation-X: evolution of large collecting area, moderate resolution grazing incidence x-ray telescopes to larger area, high resolution, adjustable optics,” Proc. SPIE 5488, 325–334 (2004).
[CrossRef]

P. B. Reid, W. Davis, D. A. Schwartz, S. Trolier-McKinstry, and R. H. T. Wilke, “Technology challenges of active x-ray optics for astronomy,” Proc. SPIE 7803, 78030I (2010).
[CrossRef]

R. S. McClelland, C. Powell, T. T. Saha, and W. W. Zhang, “Design and analysis of mirror modules for IXO and beyond,” Proc. SPIE 8147, 81470O (2011).
[CrossRef]

P. B. Reid, S. S. Murray, S. Trolier-McKinstry, M. Freeman, M. Juda, W. Podgorski, B. Ramsey, and D. Schwartz, “Development of adjustable grazing incidence optics for generation-X,” Proc. SPIE 7011, 70110V (2008).
[CrossRef]

R. H. T. Wilke, S. Trolier-McKinstry, P. B. Reid, and D. A. Schwartz, “PZT piezoelectric films on glass for Gen-X imaging,” Proc. SPIE 7803, 78030O (2010).
[CrossRef]

W. N. Davis, P. B. Reid, and D. A. Schwartz, “Finite element analyses of thin film active grazing incidence x-ray optics,” Proc. SPIE 7803, 78030P (2010).
[CrossRef]

Sens. Actuators A (2)

J. F. Shepard, P. J. Moses, and S. Trolier-McKinstry, “The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films,” Sens. Actuators A 71, 133–138 (1998).
[CrossRef]

N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, “{100}-textured, piezoelectric Pb(ZrxTi1−x)O3 thin films for MEMS: integration, deposition and properties,” Sens. Actuators A 105, 162–170 (2003).
[CrossRef]

Solid State Commun. (1)

K. H. Hardtl and H. Rau, “PbO vapour pressure in Pb(Ti1−xZrx)O3 system,” Solid State Commun. 7, 41–45 (1969).
[CrossRef]

Thin Solid Films (1)

H. Hu, C. J. Peng, and S. B. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin-films,” Thin Solid Films 223, 327–333 (1993).
[CrossRef]

Other (5)

L. I. Maissel and R. Glang, Handbook of Thin Film Technology (McGraw-Hill, 1970).

R. Mamazza, N. Y. Mark, R. G. Polcawich, B. H. Piekarski, P. Muralt, and G. J. Reynolds, “Comparison of ferroelectric and piezoelectric properties of sol-gel grown and sputter deposited Pb(Zr,Ti)O3 thin films,” in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics (IEEE, 2006), pp. 317–320.

B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics(Academic, 1971).

B. A. Tuttle, J. A. Voigt, T. J. Garino, D. C. Goodnow, R. W. Schwartz, D. L. Lamppa, T. J. Headley, and M. O. Eatough, “Chemically prepared Pb(Zr,Ti)O3 thin films: the effects of orientation and stress,” in Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics (IEEE, 1992), pp. 344–348.

SDRC I-DEAS, Now Siemens PLM Software, 5800 Granite Parkway Suite 600, Plano, TX 75024.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the bimorph mirror configuration. The device consists of a piezoelectric film blanket coated on the back side of the mirror. A pixelated array of electrodes enables independent voltage control and ultimately control of the mirror’s shape. Upon application of a voltage across the thickness of a film, the induced in-plane strain will locally deform the mirror’s surface.

Fig. 2.
Fig. 2.

(a) X-ray diffraction pattern of sputtered PZT on Pt/Ti/SiO2/Si substrates for different deposition pressures (numbers indicate lines from Pt, Si, and the substrate). (b) θ2θ scan about a narrower range showing PbO and pyrochlore peaks at high and low pressures, respectively.

Fig. 3.
Fig. 3.

X-ray diffraction scan of 1 μm thick sputtered PZT film on Schott D263 glass substrates. Films were crystallized in an RTA at 550°C for 60 s followed by a 24 h anneal at 550°C in a box furnace. Number symbols indicate lines from Pt.

Fig. 4.
Fig. 4.

(a) Relative permittivity and loss tangent as a function of frequency for 1 mm diameter electrodes of 1 μm thick PZT deposited on Schott D263 glass substrates. Closed symbols correspond to data obtained after a 60 s anneal in an RTA. Points with open symbols represent data taken after 24 h anneal at 550°C. (b) Polarization-electric field loop for the same sample after a 24 h anneal.

Fig. 5.
Fig. 5.

X-ray diffraction pattern of a 1.5 μm sputtered PZT film on glass substrates. The film was composed of six separate 0.25 μm layers; a crystallization step at 550°C for 10 h was performed after each deposited layer. No indication of pyrochlore was evident in the films.

Fig. 6.
Fig. 6.

(a) Frequency dependent permittivity and (b) P-E loop for a 1.5 μm film of sputtered PZT. The electrical data were obtained from 1cm2 electrodes. Films consisted of six individually crystallized layers of sputtered PZT on Pt/Ti on glass.

Fig. 7.
Fig. 7.

Metrology system for measuring the deflection of the mirror when a PZT cell is actuated. The electroded PZT film is visible in the foreground of the picture. The feather-touch probe scans the reflective side of the mirror, corresponding to the backside of the wafer in this picture.

Fig. 8.
Fig. 8.

(a) FEA and measured piezoelectric response for the activation of two 1cm2 electrodes (the locations are shown in black dotted lines). (b) Experimental results activating the electrodes by the application of +10V (67kV/cm) between the top and bottom electrodes. The black lines indicate contours of constant deflection as predicted from the simulated results. (c) The difference between measured and simulated results (residuals).

Tables (3)

Tables Icon

Table 1. Proposed Process Flow for Fabrication of PZT Bimorph Mirrors on Flexible Glass Substrates

Tables Icon

Table 2. Summary of Low-temperature Deposition Approaches for PZT Filmsa

Tables Icon

Table 3. RF Sputter-Deposition Parameters Used to Deposit PZT on Pt/Ti/SiO2/Si and Glass Substrates

Metrics