Abstract

A broadband polarization splitter operating in the terahertz (THz) band is proposed based on dual-core photonic crystal fiber with orthogonal microstructure in the core regions. The Index Converse Matching Coupling method is presented to design the THz polarization splitter for the first time, which exhibits several advantages, such as short splitting length, high extinction ratio, low loss, and broad operation bandwidth. By numerical simulation, it has been found that the strong coupling occurs within a frequency range of 0.4–0.7 THz. The operation bandwidth is more than 0.15 THz (equal to 138 μm). The shortest splitting length is only 1.83 cm at 0.4 THz. The extinction ratios for both of x and y polarization are better than 15dB when the frequency is larger than 0.51 THz. The lowest material absorption loss is only 0.34 dB at 0.4 THz. Moreover, this structure is simple to design and easy to fabricate over its counterparts in the communication band. Our research offers an effective method to design a broadband THz device and would be of significance for future relevant applications.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics

Nikolaos Florous, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 13(19) 7365-7373 (2005)

The impact of elliptical deformations for optimizing the performance of dual-core fluorine-doped photonic crystal fiber couplers

Shailendra K. Varshney, Nikolaos J. Florous, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 14(5) 1982-1995 (2006)

Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid

Jiangbing Du, Yange Liu, Zhi Wang, Zhanyuan Liu, Bing Zou, Long Jin, Bo Liu, Guiyun Kai, and Xiaoyi Dong
Opt. Express 16(6) 4263-4269 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription