Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Surface plasmon resonance sensor based on spectral interferometry: numerical analysis

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we introduce a numerical simulation of a phase detecting surface plasmon resonance (SPR) scheme based on spectral interference. Based on the simulation, we propose a method to optimize various aspects of SPR sensors, which enables better performance in both measurement range (MR) and sensitivity. In the simulation, four parameters including the spectrum of the broadband light source, incident angle, Au film thickness, and refractive index of the prism coupler are analyzed. The results show that it is a good solution for better performance to use a warm white broadband (625–800 nm) light source, a divergence angle of the collimated incident light less than 0.02°, and an optimized 48 nm thick Au film when a visible broadband light source is used. If a near-IR light source is used, however, the Au film thickness should be somewhat thinner according the specific spectrum. In addition, a wider MR could be obtained if a prism coupler with higher refractive index is used. With all the parameters appropriately set, the SPR MR could be extended to 0.55 refractive index units while keeping the sensitivity at a level of 108.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Surface plasmon resonance sensor based on polarization interferometry and angle modulation

Zhanliang Sun, Yonghong He, and Jihua Guo
Appl. Opt. 45(13) 3071-3076 (2006)

Numerical and analytical analysis of an ultrahigh sensitive surface plasmon resonance sensor based on a black phosphorene/graphene heterostructure

Abolfazl Nourizad, Saeed Golmohammadi, Mohammad Reza Tohidkia, and Ayuob Aghanejad
Appl. Opt. 62(25) 6542-6552 (2023)

White-light spectral interferometry for surface plasmon resonance sensing applications

Siu Pang Ng, Chi Man Lawrence Wu, Shu Yuen Wu, and Ho Pui Ho
Opt. Express 19(5) 4521-4527 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.