Abstract

We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  2. S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  3. F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
    [CrossRef]
  4. N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
    [CrossRef]
  5. I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007).
    [CrossRef]
  6. N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
    [CrossRef]
  7. L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
    [CrossRef]
  8. Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.
  9. J. T. Gopinath, V. M. Bright, C. C. Cogswell, R. D. Niederriter, A. Watson, R. Zahreddine, and R. H. Cormack, “Simulation of electrowetting lens and prism arrays for wavefront compensation,” Appl. Opt. 51, 6618–6623 (2012).
    [CrossRef]
  10. F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
    [CrossRef]
  11. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990).
    [CrossRef]
  12. A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009).
    [CrossRef]
  13. M. J. Madou, Fundamentals of Microfabrication (CRC Press, 2002).
  14. P. Concus and R. Finn, “On the behavior of a capillary surface in a wedge,” Proc. Natl. Acad. Sci. USA 63, 292–299 (1969).
    [CrossRef]
  15. S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517–524 (2006).
    [CrossRef]
  16. J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.
  17. C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
    [CrossRef]
  18. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006).
    [CrossRef]
  19. P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
    [CrossRef]
  20. F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
    [CrossRef]
  21. S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
    [CrossRef]
  22. Holographix, LLC.

2012

2010

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
[CrossRef]

2009

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009).
[CrossRef]

2008

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

S.-L. Lee and C.-F. Yang, “Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens,” Opt. Express 16, 19995–20007 (2008).
[CrossRef]

2007

I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007).
[CrossRef]

2006

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
[CrossRef]

J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178–8183 (2006).
[CrossRef]

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517–524 (2006).
[CrossRef]

2005

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

2004

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

2000

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1997

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

1990

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[CrossRef]

1969

P. Concus and R. Finn, “On the behavior of a capillary surface in a wedge,” Proc. Natl. Acad. Sci. USA 63, 292–299 (1969).
[CrossRef]

Abedian, B.

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517–524 (2006).
[CrossRef]

Abeysinghe, D. C.

Baker, H. J.

Baret, J.-C.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Baumgartel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Berry, S.

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517–524 (2006).
[CrossRef]

Bright, V. M.

Cogswell, C. C.

Concus, P.

P. Concus and R. Finn, “On the behavior of a capillary surface in a wedge,” Proc. Natl. Acad. Sci. USA 63, 292–299 (1969).
[CrossRef]

Cormack, R. H.

Csepregi, L.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[CrossRef]

Eisner, M.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Finn, R.

P. Concus and R. Finn, “On the behavior of a capillary surface in a wedge,” Proc. Natl. Acad. Sci. USA 63, 292–299 (1969).
[CrossRef]

Franssila, S.

A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009).
[CrossRef]

Gitkind, N.

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

Gopinath, J. T.

Hall, D. R.

Hamilton, C. E.

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

Haselbeck, S.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Haus, J. W.

Heikenfeld, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
[CrossRef]

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Herzig, H. P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Heuberger, A.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[CrossRef]

Hou, L.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
[CrossRef]

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

Imai, Y.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Kang, L.

J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.

Kedzierski, J.

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517–524 (2006).
[CrossRef]

Kirita, S.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Koshiishi, R.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Krogmann, F.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

Kuiper, S.

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Kulmala, S.

A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009).
[CrossRef]

Lee, S.-L.

Liu, X.

J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.

Lowenthal, D. D.

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

Madou, M. J.

M. J. Madou, Fundamentals of Microfabrication (CRC Press, 2002).

Meekhof, D.

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

Mönch, W.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

Monjardin, J. F.

Mugele, F.

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Niederriter, R. D.

Niskanen, A. J.

A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009).
[CrossRef]

Nowak, K. M.

Nussbaum, P.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Rogers, S.

I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007).
[CrossRef]

Seamans, J.

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

Seidel, H.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[CrossRef]

Shimpuku, Y.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Smith, N.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
[CrossRef]

Smith, N. R.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

N. R. Smith, D. C. Abeysinghe, J. W. Haus, and J. Heikenfeld, “Agile wide-angle beam steering with electrowetting microprisms,” Opt. Express 14, 6557–6563 (2006).
[CrossRef]

Storm, R.

I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007).
[CrossRef]

Takahashi, K.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Takai, Y.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Tidwell, S. C.

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

Tsuchiya, M.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Voitenko, I.

I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007).
[CrossRef]

Völkel, R.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Wang, J.

J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.

Watanabe, Y.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Watson, A.

Westfall, R.

I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007).
[CrossRef]

Yang, C.-F.

Yang, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
[CrossRef]

Yang, K.

J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.

Ylinen-Hinkka, T.

A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009).
[CrossRef]

Yuan, Z.

J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.

Zahreddine, R.

Zappe, H.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

Zhang, J.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
[CrossRef]

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

Zhang, Y.

J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.

Appl. Opt.

Appl. Phys. Lett.

S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Eur. Phys. J. E

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

J. Colloid Interface Sci.

S. Berry, J. Kedzierski, and B. Abedian, “Low voltage electrowetting using thin fluoropolymer films,” J. Colloid Interface Sci. 303, 517–524 (2006).
[CrossRef]

J. Disp. Technol.

N. R. Smith, L. Hou, J. Zhang, and J. Heikenfeld, “Fabrication and demonstration of electrowetting liquid lens arrays,” J. Disp. Technol. 5, 411–413 (2009).
[CrossRef]

J. Electrochem. Soc.

H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline solutions,” J. Electrochem. Soc. 137, 3612–3626 (1990).
[CrossRef]

J. Microelectromech. Syst.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable microoptics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

J. Micromech. Microeng.

L. Hou, J. Zhang, N. Smith, J. Yang, and J. Heikenfeld, “A full description of a scalable microfabrication process for arrayed electrowetting microprisms,” J. Micromech. Microeng. 20, 015044 (2010).
[CrossRef]

J. Opt. A

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A 8, S330–S336 (2006).
[CrossRef]

J. Phys. Condens. Matter

F. Mugele and J.-C. Baret, “Electrowetting: from basics to applications,” J. Phys. Condens. Matter 17, R705–R774 (2005).
[CrossRef]

Opt. Express

Proc. Natl. Acad. Sci. USA

P. Concus and R. Finn, “On the behavior of a capillary surface in a wedge,” Proc. Natl. Acad. Sci. USA 63, 292–299 (1969).
[CrossRef]

Proc. SPIE

C. E. Hamilton, S. C. Tidwell, D. Meekhof, J. Seamans, N. Gitkind, and D. D. Lowenthal, “High-power laser source with spectrally beam-combined diode laser bars,” Proc. SPIE 5336, 1–10 (2004).
[CrossRef]

I. Voitenko, R. Storm, R. Westfall, and S. Rogers, “Interferometric control of contact line, shape, and aberrations of liquid lenses,” Proc. SPIE 6714, 67140J (2007).
[CrossRef]

Pure Appl. Opt.

P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[CrossRef]

Thin Solid Films

A. J. Niskanen, T. Ylinen-Hinkka, S. Kulmala, and S. Franssila, “Ultrathin tunnel insulator films on silicon for electrochemiluminescence studies,” Thin Solid Films 517, 5779–5782 (2009).
[CrossRef]

Other

M. J. Madou, Fundamentals of Microfabrication (CRC Press, 2002).

J. Wang, Z. Yuan, L. Kang, K. Yang, Y. Zhang, and X. Liu, “Study of the mechanism of “smile” in high power diode laser arrays and strategies in improving near-field linearity,” in Proceedings of IEEE Electronic Components and Technology Conference (IEEE, 2009), pp. 837–842.

Y. Takai, R. Koshiishi, S. Kirita, M. Tsuchiya, Y. Watanabe, K. Takahashi, Y. Imai, and Y. Shimpuku, “Electrowetting Fresnel lenticular,” in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2012), pp. 632.

Holographix, LLC.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Liquid lens array fabrication process. (a) Silicon dioxide was thermally grown, silicon nitride was deposited by PECVD process, photoresist was lithographically patterned, and buffered oxide etch exposed the silicon. (b) A wet KOH etch through the silicon created the cavities to hold the liquid lenses with 1mm2 apertures. Thermal oxide was regrown as the dielectric layer. (c) The sample was shadow masked and exposed to reactive ion etching to make electrical contact to the substrate for Ti/Au electrode deposition. A hydrophobic fluorocarbon polymer (C4F8 gas precursor) was deposited on the substrate within an ICP system. (d) The arrays were then bonded onto glass slides with patterned ITO electrodes. After filling the cavities with the conducting and nonconducting liquids, the device was capped with a Pyrex slide. (e) The assembled lens array device (to scale). Note that due to the anisotropic nature of the KOH etch, the minimum aperture size is 1mm2 and occurs on the bottom side of the silicon.

Fig. 2.
Fig. 2.

Sequence of images demonstrating separately tunable adjacent lenses. This three-lens array used Teflon AF as the hydrophobic layer and the mixture of Cargille OHZB and OHGL as the conducting liquid. Circular pinhole apertures (1mm diameter) were aligned beneath the lens array to reduce image distortion from the square corners. Viewed through the lens array is a printed page of our university’s acronym, CU, each letter measuring 1.3 mm in height. (a) No voltage applied to any of the lenses; (b) 17Vrms applied to the center lens; (c) 20Vrms applied to the lens on the left, 17Vrms applied to the center lens; and (d) no voltage applied to any of the lenses, showing they return to their original focal lengths, as in (a), with little or no hysteresis.

Fig. 3.
Fig. 3.

Measurement of laser intensity as a function of position on CCD camera along a reference axis shown as the dotted white line. The first peak represents the left laser source and the second represents the source on the right. The two laser fiber sources were axially misaligned by 1mm. By adjusting the focus of the lens on the right, the corresponding spot size was corrected. For this particular pair of misaligned laser sources, 11V was applied to the right liquid lens to match the spot sizes. The inset shows the two spots with no applied voltage, with a line indicating the cross section plotted.

Fig. 4.
Fig. 4.

(a) Schematic for piston control using a tunable lens at the focus of a telescope (not to scale). (b) Measured change in optical path length (OPL) through the liquid lens with AC voltage applied. Measured change (experiment) is compared to that predicted by a Zemax model of the lens, using independent measurements of the optical power (theory), inset. This lens used a Teflon AF hydrophobic layer, with silicone oil and SDS solution as the lens liquids.

Tables (1)

Tables Icon

Table 1. Measured Zernike Coefficients of Microlens

Metrics