Abstract

In this paper, an illumination lens design for a LED-based pico-projector is presented. Different from the traditional illumination systems composed by lens group, the integral illumination lens consists of a total internal reflector (TIR) and a freeform surface. TIR acts as collimation lens and its top surface formed by a freeform surface reshapes the nonuniform circular light pattern generated by TIR to be rectangular and uniform. Diameter and height of the lens are 16 and 10 mm, respectively. An optimization method to deal with the problem of extended light source is also presented in detail in this paper. According to the simulation results of the final optimized lens, 77% (neglecting the effect of polarization) of the power of light source is collected on liquid crystal on silicon panel with a 169 ratio and illumination uniformity achieves 92% .

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
    [CrossRef]
  2. B. A. Jacobson, and R. D. Gengelbach, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
    [CrossRef]
  3. J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
    [CrossRef]
  4. J. Bortz, B. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
    [CrossRef]
  5. L. Wang, K. Y. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46, 3716–3723 (2007).
    [CrossRef]
  6. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
    [CrossRef]
  7. W. Z. Zhang, X. Y. Li, Q. X. Liu, and F. H. Yu, “Compact LED based LCOS optical engine for mobile projection,” Proc. SPIE 7506Y, 75061Y (2009).
    [CrossRef]
  8. P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
    [CrossRef]
  9. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended source,” Proc. SPIE 7423, 742302 (2009).
    [CrossRef]
  10. W. A. Parkyn, and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
    [CrossRef]
  11. W. A. Parkyn, and D. G. Pelka, “TIR lenses for fluorescent lamps,” Proc. SPIE 2538, 93–103 (1995).
    [CrossRef]
  12. K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
    [CrossRef]
  13. L. Piegl, and W. Tiller, The NURBS Book, 2nd ed. (Springer, 1996).
  14. K. Wang, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Design of compact freeform lens for application specific light-emitting diode packaging,” Opt. Express 18, 413–424 (2010).
    [CrossRef]

2012

P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
[CrossRef]

2010

2009

W. Z. Zhang, X. Y. Li, Q. X. Liu, and F. H. Yu, “Compact LED based LCOS optical engine for mobile projection,” Proc. SPIE 7506Y, 75061Y (2009).
[CrossRef]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended source,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

2008

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
[CrossRef]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

2007

L. Wang, K. Y. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46, 3716–3723 (2007).
[CrossRef]

X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
[CrossRef]

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
[CrossRef]

2000

J. Bortz, B. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

1997

B. A. Jacobson, and R. D. Gengelbach, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

W. A. Parkyn, and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[CrossRef]

1995

W. A. Parkyn, and D. G. Pelka, “TIR lenses for fluorescent lamps,” Proc. SPIE 2538, 93–103 (1995).
[CrossRef]

Bortz, J.

J. Bortz, B. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

Cassarly, W. J.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended source,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

Chang, J. Y.

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
[CrossRef]

Chen, F.

Ding, Y.

Fournier, F. R.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended source,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

Gan, Z. Y.

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

Gengelbach, R. D.

B. A. Jacobson, and R. D. Gengelbach, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

Goldstein, P.

P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
[CrossRef]

Gu, P. F.

Ho, C.

X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
[CrossRef]

Ho, Y. L.

X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
[CrossRef]

Hoi, S.

X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
[CrossRef]

Jacobson, B. A.

B. A. Jacobson, and R. D. Gengelbach, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

Lan, H. C.

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
[CrossRef]

Li, X. Y.

W. Z. Zhang, X. Y. Li, Q. X. Liu, and F. H. Yu, “Compact LED based LCOS optical engine for mobile projection,” Proc. SPIE 7506Y, 75061Y (2009).
[CrossRef]

Liu, Q. X.

W. Z. Zhang, X. Y. Li, Q. X. Liu, and F. H. Yu, “Compact LED based LCOS optical engine for mobile projection,” Proc. SPIE 7506Y, 75061Y (2009).
[CrossRef]

Liu, S.

K. Wang, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Design of compact freeform lens for application specific light-emitting diode packaging,” Opt. Express 18, 413–424 (2010).
[CrossRef]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

Liu, X.

Liu, Z. Y.

K. Wang, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Design of compact freeform lens for application specific light-emitting diode packaging,” Opt. Express 18, 413–424 (2010).
[CrossRef]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

Luo, X. B.

K. Wang, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Design of compact freeform lens for application specific light-emitting diode packaging,” Opt. Express 18, 413–424 (2010).
[CrossRef]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

Luo, Y.

Pan, J. W.

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
[CrossRef]

Parkyn, W. A.

W. A. Parkyn, and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[CrossRef]

W. A. Parkyn, and D. G. Pelka, “TIR lenses for fluorescent lamps,” Proc. SPIE 2538, 93–103 (1995).
[CrossRef]

Pelka, D. G.

W. A. Parkyn, and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[CrossRef]

W. A. Parkyn, and D. G. Pelka, “TIR lenses for fluorescent lamps,” Proc. SPIE 2538, 93–103 (1995).
[CrossRef]

Piegl, L.

L. Piegl, and W. Tiller, The NURBS Book, 2nd ed. (Springer, 1996).

Pitou, D.

J. Bortz, B. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

Qian, K. Y.

Rolland, J. P.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended source,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

Shatz, B.

J. Bortz, B. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

Sun, W. S.

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
[CrossRef]

Tan, L.

X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
[CrossRef]

Tiller, W.

L. Piegl, and W. Tiller, The NURBS Book, 2nd ed. (Springer, 1996).

Wang, C. M.

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
[CrossRef]

Wang, K.

K. Wang, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Design of compact freeform lens for application specific light-emitting diode packaging,” Opt. Express 18, 413–424 (2010).
[CrossRef]

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

Wang, L.

Yu, F. H.

W. Z. Zhang, X. Y. Li, Q. X. Liu, and F. H. Yu, “Compact LED based LCOS optical engine for mobile projection,” Proc. SPIE 7506Y, 75061Y (2009).
[CrossRef]

Yu, X. J.

X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
[CrossRef]

Zhang, W. Z.

W. Z. Zhang, X. Y. Li, Q. X. Liu, and F. H. Yu, “Compact LED based LCOS optical engine for mobile projection,” Proc. SPIE 7506Y, 75061Y (2009).
[CrossRef]

Zheng, Z. R.

Zhou, B.

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

Appl. Opt.

J. Disp. Technol.

X. J. Yu, Y. L. Ho, L. Tan, C. Ho, and S. Hoi, “LED-based projection systems,” J. Disp. Technol. 3, 295–303 (2007).
[CrossRef]

Opt Express

J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt Express 15, 10483–10491 (2007).
[CrossRef]

Opt. Eng.

K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80 W light-emitting diode street lamp,” Opt. Eng. 47, 013002 (2008).
[CrossRef]

Opt. Express

Proc. SPIE

J. Bortz, B. Shatz, and D. Pitou, “Optimal design of a nonimaging projection lens for use with an LED source and a rectangular target,” Proc. SPIE 4092, 130–138 (2000).
[CrossRef]

B. A. Jacobson, and R. D. Gengelbach, “Beam-shape transforming devices in high-efficiency projection systems,” Proc. SPIE 3139, 141 (1997).
[CrossRef]

W. Z. Zhang, X. Y. Li, Q. X. Liu, and F. H. Yu, “Compact LED based LCOS optical engine for mobile projection,” Proc. SPIE 7506Y, 75061Y (2009).
[CrossRef]

P. Goldstein, “Radially symmetric freeform lens design for extended sources,” Proc. SPIE 8487, 84870C (2012).
[CrossRef]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Designing freeform reflectors for extended source,” Proc. SPIE 7423, 742302 (2009).
[CrossRef]

W. A. Parkyn, and D. G. Pelka, “New TIR lens applications for light-emitting diodes,” Proc. SPIE 3139, 135–140 (1997).
[CrossRef]

W. A. Parkyn, and D. G. Pelka, “TIR lenses for fluorescent lamps,” Proc. SPIE 2538, 93–103 (1995).
[CrossRef]

Other

L. Piegl, and W. Tiller, The NURBS Book, 2nd ed. (Springer, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Schematic diagram of construction components of optical engine.

Fig. 2.
Fig. 2.

(a) Light pipe illumination system. (b) Microlens arrays illumination system.

Fig. 3.
Fig. 3.

Light rays out of control.

Fig. 4.
Fig. 4.

Effect of extended light source.

Fig. 5.
Fig. 5.

Cross-section of freeform TIR lens.

Fig. 6.
Fig. 6.

Slicing of the light source.

Fig. 7.
Fig. 7.

Intersections of the edge rays with the top surface of TIR.

Fig. 8.
Fig. 8.

Slicing of target plane.

Fig. 9.
Fig. 9.

Construction of the seed curves of freeform top surface.

Fig. 10.
Fig. 10.

Validation of the freeform top surface.

Fig. 11.
Fig. 11.

Cross-section of integral freeform illumination lens with light rays traced.

Fig. 12.
Fig. 12.

Illumination distribution on target plane based on point light source.

Fig. 13.
Fig. 13.

Illumination distribution on target plane based on extended light source.

Fig. 14.
Fig. 14.

Match the area grids of target plane with illumination distribution.

Fig. 15.
Fig. 15.

Optimization process of the top surface of TIR.

Fig. 16.
Fig. 16.

(a) Final optimized illumination lens. (b) Its illumination distribution.

Fig. 17.
Fig. 17.

(a) Vertical deviation. (b) Horizontal deviation. (c) Rotational error.

Fig. 18.
Fig. 18.

(a) Curves of light efficiency versus dh and dv. (b) Curve of light efficiency versus dθ. (c) Curves of illumination uniformity versus dh and dv. (d) Curve of illumination uniformity versus dθ.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

β=π2+θ1+(π2θ2)=π+θ1θ2.
[1+n22n(O⃗·I⃗)]12N⃗=O⃗nI⃗.
I=dϕdω,
dω=sin(θ)dθdγ.
dϕ=I(θ)sin(θ)dθdγ.
ϕ0=02π0π/2I(θ)sin(θ)dθdγ.
2π0θiI(θ)sin(θ)dθ=iϕ0M.
γj=jN2π.
xi=aixi(i=0,1,,M),
yi=biyi(j=0,1,,N).

Metrics