Abstract

A set of coupled rate equations for diode-pumped Q-switched and mode-locked laser with electro-optic (EO) modulator and middle semiconductor saturable absorber mirror under the Gaussian spatial distribution approximation are given. The numerically simulated results of these equations show that the pulse width of the Q-switched envelope are related to the repetition rate of EO, the stimulated emission section of the gain medium, the pump power and so on. When the pulse width of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the interval of two neighboring mode-locking pulses, there is only one mode-locked pulse lying in a Q-switched envelope and its repetition rate depends on that of EO. This means that single mode-locking pulses with low repetition rate, subnanosecond duration, high peak power, and high stability are generated. The simulated results are consistent with the experimental values.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription