Abstract

We describe three different interferometric techniques (electronic speckle pattern interferometry, digital holographic interferometry, and digital shearography), using a long-wave infrared radiation produced by a CO2 laser and recorded on a microbolometer array. Experimental results showing how these methods can be used for nondestructive testing are presented. Advantages and disadvantages of these approaches are discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  2. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).
  3. P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).
  4. B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
    [CrossRef]
  5. J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
    [CrossRef]
  6. W. A. Simpson and W. E. Deeds, “Real-time visual reconstruction of infrared holograms,” Appl. Opt. 9, 499–501 (1970).
    [CrossRef]
  7. S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484(1971).
    [CrossRef]
  8. R. R. Roberts and T. D. Black, “Infrared holograms recorded at 10.6 μm and reconstructed at 0.6328 μm,” Appl. Opt. 15, 2018–2019 (1976).
    [CrossRef]
  9. M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977).
    [CrossRef]
  10. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
    [CrossRef]
  11. R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
    [CrossRef]
  12. J. Lewandowski, B. Mongeau, and M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
    [CrossRef]
  13. R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 mm,” Proc. SPIE 2042, 259–263 (1994).
  14. R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301(2000).
    [CrossRef]
  15. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  16. O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
    [CrossRef]
  17. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
    [CrossRef]
  18. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
    [CrossRef]
  19. N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12(2008).
    [CrossRef]
  20. J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 6616–6672 (2007).
    [CrossRef]
  21. J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
    [CrossRef]
  22. I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
    [CrossRef]
  23. J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.
  24. I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
    [CrossRef]
  25. T. Maack, R. Kowarschik, and G. Notni, “Optimum lens aperture in phase-shifting speckle interferometric setups for maximum accuracy of phase measurement,” Appl. Opt. 36, 6217–6224 (1997).
    [CrossRef]
  26. J.-F. Vandenrijt, “Etude et développment de techniques de métrologie de déplacements en lumière cohérente en infrarouge thermique,” Ph.D. dissertation (Université de Liège, 2010) (in French).
  27. G. Pedrini and H. Tiziani, in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001).
  28. M. Takeda, Hideki, and S. Kobayashi, “Fourier-transform method of fringe pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160(1982).
    [CrossRef]
  29. W. Steinchen and L. Yang, in Digital Shearography (SPIE, 2003).
  30. M. Kalms and W. Osten, “Mobile shearography system for the inspection of aircraft and automotive components,” Opt. Eng. 42, 1188–1196 (2003).
    [CrossRef]
  31. S. Debrus, “Speckle shearing interferometer using a Savart plate,” Opt. Commun. 20, 257–267 (1977).
    [CrossRef]
  32. F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
    [CrossRef]
  33. M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

2010 (2)

J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[CrossRef]

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

2008 (3)

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Appl. Opt. 47, A7–A12(2008).
[CrossRef]

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

2007 (1)

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 6616–6672 (2007).
[CrossRef]

2003 (3)

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

M. Kalms and W. Osten, “Mobile shearography system for the inspection of aircraft and automotive components,” Opt. Eng. 42, 1188–1196 (2003).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

2000 (2)

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301(2000).
[CrossRef]

1997 (1)

1994 (2)

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 mm,” Proc. SPIE 2042, 259–263 (1994).

1984 (2)

J. Lewandowski, B. Mongeau, and M. Cormier, “Real time interferometry using IR holography on oil films,” Appl. Opt. 23, 242–246 (1984).
[CrossRef]

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

1982 (1)

1978 (1)

1977 (3)

M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

S. Debrus, “Speckle shearing interferometer using a Savart plate,” Opt. Commun. 20, 257–267 (1977).
[CrossRef]

1976 (1)

1971 (1)

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484(1971).
[CrossRef]

1970 (1)

1969 (1)

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Alexeenko, I.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Arecchi, F. T.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

Beaulieu, R.

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301(2000).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 mm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

M. Rioux, M. Blanchard, M. Cornier, R. Beaulieu, and D. Bélanger, “Plastic recording media for holography at 10.6 μm,” Appl. Opt. 16, 1876–1879 (1977).
[CrossRef]

Bélanger, D.

Black, T. D.

Blanchard, M.

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Buah-Bassuah, P. K.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

Cédric, T.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Chi, W.

Chin, S. L.

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 mm,” Proc. SPIE 2042, 259–263 (1994).

Chivian, J. S.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Claytor, R. N.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Cormier, M.

Cornier, M.

Crastes, A.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

De Nicola, S.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

de Ocáriz, I. S.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Debrus, S.

S. Debrus, “Speckle shearing interferometer using a Savart plate,” Opt. Commun. 20, 257–267 (1977).
[CrossRef]

Deeds, W. E.

Eden, D. D.

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

Ferraro, P.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Fièque, B.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

George, N.

Georges, M.

J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[CrossRef]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 6616–6672 (2007).
[CrossRef]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Georges, M. P.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

Grilli, S.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Hideki,

Jones, R.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

Jorge, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Jüptner, W.

Kalms, M.

M. Kalms and W. Osten, “Mobile shearography system for the inspection of aircraft and automotive components,” Opt. Eng. 42, 1188–1196 (2003).
[CrossRef]

Khare, K.

Kobayashi, S.

Kowarschik, R.

Kruse, P. W.

P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).

Kurihara, K.

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484(1971).
[CrossRef]

Kwon, O.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

Legras, O.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Lessard, R. A.

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301(2000).
[CrossRef]

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 mm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Pulsed IR holography on takiwax films,” Appl. Opt. 17, 3619–3621 (1978).
[CrossRef]

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

Lewandowski, J.

Løkberg, O. J.

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

López, I.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Maack, T.

Meucci, R.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

Miccio, L.

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

Minassian, C.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Mongeau, B.

Notni, G.

Orteu, J.-J.

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

Osten, W.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

M. Kalms and W. Osten, “Mobile shearography system for the inspection of aircraft and automotive components,” Opt. Eng. 42, 1188–1196 (2003).
[CrossRef]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Pedrini, G.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

G. Pedrini and H. Tiziani, in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001).

Rioux, M.

Robert, P.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Roberts, R. R.

Schnars, U.

Schreier, H. W.

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

Simpson, W. A.

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Steinchen, W.

W. Steinchen and L. Yang, in Digital Shearography (SPIE, 2003).

Sutton, M. A.

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

Takeda, M.

Thizy, C.

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Tissot, J. L.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Tiziani, H.

G. Pedrini and H. Tiziani, in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001).

Vandenrijt, J.-F.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

J.-F. Vandenrijt and M. Georges, “Electronic speckle pattern interferometry with microbolometer arrays at 10.6 μm,” Appl. Opt. 49, 5067–5075 (2010).
[CrossRef]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 6616–6672 (2007).
[CrossRef]

J.-F. Vandenrijt, “Etude et développment de techniques de métrologie de déplacements en lumière cohérente en infrarouge thermique,” Ph.D. dissertation (Université de Liège, 2010) (in French).

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, 1979).

Vilain, M.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Vollheim, B.

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

Wykes, C.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

Yamaguchi, I.

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

Yang, L.

W. Steinchen and L. Yang, in Digital Shearography (SPIE, 2003).

Yon, J. J.

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

Appl. Mech. Mater. (1)

I. Alexeenko, J.-F. Vandenrijt, M. P. Georges, G. Pedrini, T. Cédric, W. Osten, and B. Vollheim, “Digital holographic interferometry by using long wave infrared radiation (CO2laser),” Appl. Mech. Mater. 24–25, 147–152 (2010).
[CrossRef]

Appl. Opt. (9)

Appl. Phys. Lett. (3)

R. Beaulieu, R. A. Lessard, M. Cormier, M. Blanchard, and M. Rioux, “Infrared holography on commercial wax at 10.6 μm,” Appl. Phys. Lett. 31, 602–603 (1977).
[CrossRef]

S. Kobayashi and K. Kurihara, “Infrared holography with wax and gelatin film,” Appl. Phys. Lett. 19, 482–484(1971).
[CrossRef]

J. S. Chivian, R. N. Claytor, and D. D. Eden, “Infrared holography at 10.6 μm,” Appl. Phys. Lett. 15, 123–125 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (3)

S. Debrus, “Speckle shearing interferometer using a Savart plate,” Opt. Commun. 20, 257–267 (1977).
[CrossRef]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215, 257–262 (2003).
[CrossRef]

S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Opt. Commun. 281, 1145–1449 (2008).
[CrossRef]

Opt. Eng. (2)

F. Chen, G. M. Brown, and M. Song, “Overview of the three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

M. Kalms and W. Osten, “Mobile shearography system for the inspection of aircraft and automotive components,” Opt. Eng. 42, 1188–1196 (2003).
[CrossRef]

Opt. Laser Technol. (1)

O. J. Løkberg and O. Kwon, “Electronic speckle pattern interferometry using a CO2 laser,” Opt. Laser Technol. 16, 187–192 (1984).
[CrossRef]

Proc. SPIE (5)

R. Beaulieu, R. A. Lessard, and S. L. Chin, “Resist recording media for holography at 10.6 mm,” Proc. SPIE 2042, 259–263 (1994).

R. Beaulieu and R. A. Lessard, “Infrared holography on poly(acrylic acid) films,” Proc. SPIE 4087, 1298–1301(2000).
[CrossRef]

B. Fièque, P. Robert, C. Minassian, M. Vilain, J. L. Tissot, A. Crastes, O. Legras, and J. J. Yon, “Uncooled amorphous silicon XGA IRFPA with 17 μm pixel-pitch for high end applications,” Proc. SPIE 6940, 69401X (2008).
[CrossRef]

I. Yamaguchi, “Fundamentals and applications of speckle,” Proc. SPIE 4933, 1–8 (2003).
[CrossRef]

J.-F. Vandenrijt and M. Georges, “Infrared electronic speckle pattern interferometry at 10 μm,” Proc. SPIE 6616, 6616–6672 (2007).
[CrossRef]

Other (8)

J.-F. Vandenrijt, C. Thizy, I. Alexeenko, I. Jorge, I. López, I. S. de Ocáriz, G. Pedrini, W. Osten, and M. Georges, “Electronic speckle pattern interferometry at long infrared wavelengths: scattering requirements,” in Fringe 2009—6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska, eds. (Springer, 2009), pp. 596–599.

J.-F. Vandenrijt, “Etude et développment de techniques de métrologie de déplacements en lumière cohérente en infrarouge thermique,” Ph.D. dissertation (Université de Liège, 2010) (in French).

G. Pedrini and H. Tiziani, in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001).

M. A. Sutton, J.-J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurement. Basic Concepts, Theory and Applications (Springer, 2009).

W. Steinchen and L. Yang, in Digital Shearography (SPIE, 2003).

C. M. Vest, Holographic Interferometry (Wiley, 1979).

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

P. W. Kruse, Uncooled Thermal Imaging. Arrays, Systems and Applications (SPIE, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Scheme of the LWIR ESPI setup.

Fig. 2.
Fig. 2.

Ideal reference beam injection.

Fig. 3.
Fig. 3.

Modified needle with embedded LWIR optical fiber for generating miniature point source.

Fig. 4.
Fig. 4.

Various schemes for reference beam injection: (a) with focusing reference beam at front focal point through BC, (b) with modified needle at front focal point, (c) through BC and reference launch with fiber and lens beyond the focal point.

Fig. 5.
Fig. 5.

Photographs and definition of the different samples used in our experiments.

Fig. 6.
Fig. 6.

(a)–(c) Phase maps modulo 2 π obtained after heating composite samples. (d) Defect map after postprocessing phase map (c).

Fig. 7.
Fig. 7.

(a) Phase map modulo 2 π obtained by ESPI at micrometer wavelength. (b)–(d) Simulated equivalent phase map with shorter wavelengths, respectively 1.85, 0.93, and 0.46 µm.

Fig. 8.
Fig. 8.

DHI method. (a) Reconstructed digital hologram. (b) Phase difference due to the thermal deformation.

Fig. 9.
Fig. 9.

(a) Shearography setup. (b) Overlap of images reflected by mirrors M1 and M2 with lateral shear along x direction and amount Δ x .

Fig. 10.
Fig. 10.

Phase map obtained with LWIR shearography after heating of CFRP sample.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | R ( x , y ) | 2 + | U ( x , y ) | 2 + R ( x , y ) U * ( x , y ) + R * ( x , y ) U ( x , y ) ,
= I R ( x , y ) + I U ( x , y ) + ( e R e U ) 2 ( I R ( x , y ) I U ( x , y ) ) 1 / 2 cos ( ϕ ( x , y ) ) ,
I n = I R + I U + m ( I R + I U ) cos ( ϕ + n π 2 ) ,
Δ ϕ = 2 π λ s · d ,
Δ ϕ = ϕ a ϕ b = φ R φ U a ( φ R φ U b ) = tan 1 [ Im ( R * U b ) Re ( R * U b ) ] tan 1 [ Im ( R * U a ) Re ( R * U a ) ] ,
Δ ϕ = 2 π λ s d x Δ x ,

Metrics