Abstract

The development of a specific holographic setup designed for providing three-dimensional imaging of micrometer particles in a very small volume inside a large air-flow facility is described. Study of a 1.5mm3 volume is made possible with the use of a microscope objective for magnification of the object field. Particles that are too small to be detected with a standard in-line hologram (about 1 μm in diameter or less) are illuminated laterally, and the 90° scattered field is magnified and recombined with a reference wave for in-line recording. A calibration procedure relates reconstruction space coordinates to measurement volume coordinates. Analysis of the results shows that particle images reconstruct with very good axial accuracy. Preliminary tests show that this approach should allow measurements of fluid velocity very close to the wall in a wind-tunnel flow.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. Chan, T. P. Leung, and Y. J. Li, “Holographic imaging of side-scattering particles,” Opt. Laser Technol. 28, 565–571 (1996).
    [CrossRef]
  2. Y. Pu and H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. 20, 1920–1932 (2003).
    [CrossRef]
  3. H. Meng, W. L. Anderson, F. Hussain, and D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. 10, 2046–2058 (1993).
    [CrossRef]
  4. Y. Pu and H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
    [CrossRef]
  5. Y. Pu, L. Cao, and H. Meng, “Fundamental issues and latest development in holographic particle image velocimetry,” presented at IMECE2002: ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, 2002.
  6. J. O. Scherer and L. P. Bernal, “In-line holographic particle image velocimetry for turbulent flows,” Appl. Opt. 36, 9309–9318 (1997).
    [CrossRef]
  7. H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle image velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
    [CrossRef]
  8. D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for high-resolution particle-image velocimetry,” Appl. Opt. 33, 7159–7170 (1994).
    [CrossRef]
  9. J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurements in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
    [CrossRef]
  10. K. T. Chan and Y. J. Li, “Pipe flow measurement by using a side-scattering holographic particle imaging technique,” Opt. Laser Technol. 30, 7–14 (1998).
    [CrossRef]
  11. Y. Pu, and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
    [CrossRef]
  12. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005).
    [CrossRef]
  13. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
    [CrossRef]
  14. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [CrossRef]
  15. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).
  16. U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
    [CrossRef]
  17. T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233(1997).
    [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  19. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
    [CrossRef]
  20. J. de Jong and H. Meng, “Digital holographic particle validation via complex wave,” Appl. Opt. 46, 7652–7661 (2007).
    [CrossRef]
  21. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef]
  22. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164–166 (2003).
    [CrossRef]
  23. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006).
    [CrossRef]
  24. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
    [CrossRef]
  25. O. Amili and J. Soria, “Measurements of near wall velocity and wall stress in a wall-bounded turbulent flow using digital holographic microscopic PIV and shear stress sensitive film,” presented at Progress in Wall Turbulence: Understanding and Modeling: Proceedings of the WALLTURB International Workshop, Lille, France, 2009.
  26. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
    [CrossRef]
  27. L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holography imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47, 4501–4508(2008).
    [CrossRef]

2008 (2)

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holography imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47, 4501–4508(2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (1)

2004 (2)

Y. Pu and H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

2003 (3)

2000 (1)

Y. Pu, and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

1999 (1)

1998 (1)

K. T. Chan and Y. J. Li, “Pipe flow measurement by using a side-scattering holographic particle imaging technique,” Opt. Laser Technol. 30, 7–14 (1998).
[CrossRef]

1997 (3)

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurements in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233(1997).
[CrossRef]

J. O. Scherer and L. P. Bernal, “In-line holographic particle image velocimetry for turbulent flows,” Appl. Opt. 36, 9309–9318 (1997).
[CrossRef]

1996 (1)

K. T. Chan, T. P. Leung, and Y. J. Li, “Holographic imaging of side-scattering particles,” Opt. Laser Technol. 28, 565–571 (1996).
[CrossRef]

1995 (1)

1994 (2)

1993 (1)

H. Meng, W. L. Anderson, F. Hussain, and D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. 10, 2046–2058 (1993).
[CrossRef]

1972 (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Adams, M.

T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233(1997).
[CrossRef]

Adrian, R. J.

Amili, O.

O. Amili and J. Soria, “Measurements of near wall velocity and wall stress in a wall-bounded turbulent flow using digital holographic microscopic PIV and shear stress sensitive film,” presented at Progress in Wall Turbulence: Understanding and Modeling: Proceedings of the WALLTURB International Workshop, Lille, France, 2009.

Anderson, W. L.

H. Meng, W. L. Anderson, F. Hussain, and D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. 10, 2046–2058 (1993).
[CrossRef]

Barnhart, D. H.

Bernal, L. P.

Callens, N.

Cao, L.

L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holography imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47, 4501–4508(2008).
[CrossRef]

Y. Pu, L. Cao, and H. Meng, “Fundamental issues and latest development in holographic particle image velocimetry,” presented at IMECE2002: ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, 2002.

Chan, K. T.

K. T. Chan and Y. J. Li, “Pipe flow measurement by using a side-scattering holographic particle imaging technique,” Opt. Laser Technol. 30, 7–14 (1998).
[CrossRef]

K. T. Chan, T. P. Leung, and Y. J. Li, “Holographic imaging of side-scattering particles,” Opt. Laser Technol. 28, 565–571 (1996).
[CrossRef]

de Jong, J.

Dubois, F.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Hoyos, M.

Hussain, F.

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle image velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef]

H. Meng, W. L. Anderson, F. Hussain, and D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. 10, 2046–2058 (1993).
[CrossRef]

Jericho, M. H.

Joannes, L.

Juptner, W.

Juptner, W. P. O.

T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233(1997).
[CrossRef]

Katz, J.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurements in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

Kreis, T. M.

T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233(1997).
[CrossRef]

Kreuzer, H. J.

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Kurowski, P.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Legros, J. C.

Leung, T. P.

K. T. Chan, T. P. Leung, and Y. J. Li, “Holographic imaging of side-scattering particles,” Opt. Laser Technol. 28, 565–571 (1996).
[CrossRef]

Li, Y. J.

K. T. Chan and Y. J. Li, “Pipe flow measurement by using a side-scattering holographic particle imaging technique,” Opt. Laser Technol. 30, 7–14 (1998).
[CrossRef]

K. T. Chan, T. P. Leung, and Y. J. Li, “Holographic imaging of side-scattering particles,” Opt. Laser Technol. 28, 565–571 (1996).
[CrossRef]

Liu, D.

H. Meng, W. L. Anderson, F. Hussain, and D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. 10, 2046–2058 (1993).
[CrossRef]

Malkiel, E.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

Meinertzhagen, I. A.

Meng, H.

L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holography imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47, 4501–4508(2008).
[CrossRef]

J. de Jong and H. Meng, “Digital holographic particle validation via complex wave,” Appl. Opt. 46, 7652–7661 (2007).
[CrossRef]

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005).
[CrossRef]

Y. Pu and H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Y. Pu and H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. 20, 1920–1932 (2003).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef]

Y. Pu, and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle image velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef]

H. Meng, W. L. Anderson, F. Hussain, and D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. 10, 2046–2058 (1993).
[CrossRef]

Y. Pu, L. Cao, and H. Meng, “Fundamental issues and latest development in holographic particle image velocimetry,” presented at IMECE2002: ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, 2002.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Monnom, O.

Pan, G.

Papen, G. C.

Pu, Y.

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005).
[CrossRef]

Y. Pu and H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Y. Pu and H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. 20, 1920–1932 (2003).
[CrossRef]

Y. Pu, and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

Y. Pu, L. Cao, and H. Meng, “Fundamental issues and latest development in holographic particle image velocimetry,” presented at IMECE2002: ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, 2002.

Scherer, J. O.

Schnars, U.

Sheng, J.

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

Soria, J.

O. Amili and J. Soria, “Measurements of near wall velocity and wall stress in a wall-bounded turbulent flow using digital holographic microscopic PIV and shear stress sensitive film,” presented at Progress in Wall Turbulence: Understanding and Modeling: Proceedings of the WALLTURB International Workshop, Lille, France, 2009.

Tao, B.

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurements in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

Woodward, S.

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Xu, W.

Yaroslavskii, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Yourassowsky, C.

Zhang, J.

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurements in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

Appl. Opt. (11)

U. Schnars and W. Juptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).
[CrossRef]

D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for high-resolution particle-image velocimetry,” Appl. Opt. 33, 7159–7170 (1994).
[CrossRef]

J. O. Scherer and L. P. Bernal, “In-line holographic particle image velocimetry for turbulent flows,” Appl. Opt. 36, 9309–9318 (1997).
[CrossRef]

F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999).
[CrossRef]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle image velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef]

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44, 7697–7708 (2005).
[CrossRef]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45, 864–871 (2006).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef]

J. de Jong and H. Meng, “Digital holographic particle validation via complex wave,” Appl. Opt. 46, 7652–7661 (2007).
[CrossRef]

L. Cao, G. Pan, J. de Jong, S. Woodward, and H. Meng, “Hybrid digital holography imaging system for three-dimensional dense particle field measurement,” Appl. Opt. 47, 4501–4508(2008).
[CrossRef]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42, 827–833 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[CrossRef]

Exp. Fluids (3)

Y. Pu, and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurements in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023–1035 (2008).
[CrossRef]

J. Opt. Soc. Am. (2)

Y. Pu and H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. 20, 1920–1932 (2003).
[CrossRef]

H. Meng, W. L. Anderson, F. Hussain, and D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. 10, 2046–2058 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Opt. Laser Technol. (2)

K. T. Chan and Y. J. Li, “Pipe flow measurement by using a side-scattering holographic particle imaging technique,” Opt. Laser Technol. 30, 7–14 (1998).
[CrossRef]

K. T. Chan, T. P. Leung, and Y. J. Li, “Holographic imaging of side-scattering particles,” Opt. Laser Technol. 28, 565–571 (1996).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

T. M. Kreis, M. Adams, and W. P. O. Juptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233(1997).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333–334 (1972).

Other (3)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Y. Pu, L. Cao, and H. Meng, “Fundamental issues and latest development in holographic particle image velocimetry,” presented at IMECE2002: ASME International Mechanical Engineering Congress and Exposition, New Orleans, Louisiana, 2002.

O. Amili and J. Soria, “Measurements of near wall velocity and wall stress in a wall-bounded turbulent flow using digital holographic microscopic PIV and shear stress sensitive film,” presented at Progress in Wall Turbulence: Understanding and Modeling: Proceedings of the WALLTURB International Workshop, Lille, France, 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Dual-beam side-scattering setup with in-line holographic recording for wind-tunnel measurements. A microscope-objective lens is introduced to magnify the object beam.

Fig. 2.
Fig. 2.

Schematic representation of the optical system: imaging planes for a volume with two particles.

Fig. 3.
Fig. 3.

Holographic imaging scheme for current numerical implementation. (ξ,η) are the coordinates in the hologram plane. Top, recording; bottom, reconstruction.

Fig. 4.
Fig. 4.

Setup for calibration procedure.

Fig. 5.
Fig. 5.

Reconstruction of calibration pinhole hologram in four different planes. From (a) to (d), pinhole source image is refocusing.

Fig. 6.
Fig. 6.

Depth evolution of the calibration pinhole image maximum planar intensity level, Ipin,max(Z). Values are normalized by the overall maximum value from all reconstructed planes, max(Ipin,max(Z)).

Fig. 7.
Fig. 7.

Model for whole-system imaging equations, given a particle or point source p in plane Aop inside the tunnel. In the lens reference frame z, HiH¯=di>0 and HoAo¯=do<0. In the hologram frame Z, the distance from a point in the magnified image of particle p (plane Aip) to the hologram is Zip<0, and the distance from the hologram to the refocused point image is Zip>0.

Fig. 8.
Fig. 8.

Plot of di values obtained for the different calibration pinhole shifts Δzo=0.1mm within the wind-tunnel. Horizontal line corresponds to the average value diavg.

Fig. 9.
Fig. 9.

Geometric transformation between (a) volume in reconstruction coordinates (xi,yi,Zi) and (b) final calibrated volume in tunnel wall coordinates (xo,yo,zo). The reconstruction depth range Zspan[18.794.0]mm is used in numerical reconstruction of particle fields so that the final volume span in wall coordinates is zo[01.5]mm in the wall-normal direction, according to Eq. (10).

Fig. 10.
Fig. 10.

Example of a typical particle hologram taken from wind-tunnel experiments.

Fig. 11.
Fig. 11.

Particle volume reconstruction: (a) reconstructed plane in a given depth position within Zspan. Particle enclosed by the circle is around its focusing position. (b) Depth series (Zstep=0.1mm) of cropped images around that single particle.

Fig. 12.
Fig. 12.

Intensity, spatial gradient, and real and imaginary distributions in different (cropped) depth planes around a particle. A bilinear interpolation is applied in these images.

Fig. 13.
Fig. 13.

Data-storage structure for reconstructed volumes. M and N are the number of pixels in the CCD sensor. m=0:M1 and n=0:N1 are integer counters in the discretized (xi,yi) plane.

Fig. 14.
Fig. 14.

Whole-tube intensity (gray-level) histograms for candidates A, B, and C, presented as discrete probability distributions. A sharp peak as seen for particle A is associated with an improved signal-to-noise ratio.

Fig. 15.
Fig. 15.

Intensity data in tube structures created around pre-estimated positions of validated particles A and B. Top, particle A; bottom, particle B. For visualization purposes, some planes are not depicted here. Intensity values for each particle are normalized by the maximum value found in the respective tube.

Fig. 16.
Fig. 16.

Plane-by-plane criteria for particle A. Top, intensity-based criteria; middle, gradient-based criteria; bottom, combined final criteria for particle focus position evaluation. Steps between planes in reconstruction space is 50 μm. In the bottom plot, F indicates the estimated focus position.

Fig. 17.
Fig. 17.

Plane-by-plane criteria for particle B. Top, intensity-based criteria; middle, gradient-based criteria; bottom, combined final criteria for particle focus position evaluation. Steps between planes in reconstruction space are 50 μm. In the bottom plot, F indicates the estimated focus position.

Fig. 18.
Fig. 18.

Typical reconstructed particle volume in calibrated wall coordinates. Corresponding directions in wind-tunnel flow nomenclature are indicated in parentheses.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

b(x,y;Z)=ejkZjλZH(ξ,η)R(ξ,η)ejk2Z[(xξ)2+(yη)2]dξdη,
b(x,y;Z)=ejkZF1{F{H·R}HZ},
Zip=1(1ZR±1ZR1Zip),
xipZip=xipZip,yipZip=yipZip,
Zip<0,Zip>0,|Zip|=|Zip|,
xip=xip,yip=yip,
1Pip1Pop=1f,xipxop=yipyop=PipPop=Mtp<0,
Zip=Pipdi,
zop=doPop|ε|.
zop(Zip)=dof(diZip)f(diZip)|ε|,
Mtp(Zip)=fdi+Zipf.
Δzo12=zo2zo1=f(diZi1)f(diZi1)f(diZi2)f(diZi2).
δzop=(zopdi)2(δdi)2+(zopZip)2(δZip)2,

Metrics