Abstract

This paper presents a digital holographic method for measurement of periodic asymmetric temperature fields. The method is based on a modified Twyman–Green setup having double sensitivity. For measurement only one precisely synchronized and triggered digital camera is used. The periodicity and self-similarity of each cycle of the measured phenomenon combined with the precisely synchronized camera capture allow one to obtain data later used for three-dimensional (3D) measurement. The reconstruction of 3D temperature field is based on tomographic approach.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
    [CrossRef]
  2. C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).
    [CrossRef]
  3. S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993).
    [CrossRef]
  4. M. Giglio, S. Musazzi, and U. Perini, “A white light speckle Schlieren technique,” Opt. Commun. 36, 117–120 (1981).
    [CrossRef]
  5. E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
    [CrossRef]
  6. D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
    [CrossRef]
  7. C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33, 1983–1988 (1994).
    [CrossRef]
  8. P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
    [CrossRef]
  9. A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
    [CrossRef]
  10. N. A. Fomin, Speckle Photography for Fluid Mechanics Measurements (Springer, 1998).
  11. D. E. Silva, “Talbot interferometer for radial and lateral derivatives,” Appl. Opt. 11, 2613–2624 (1972).
    [CrossRef]
  12. C. Shakher, A. J. P. Daniel, and S. K. Angra, “Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings,” Opt. Eng. 33, 2663–2669 (1994).
    [CrossRef]
  13. M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings,” Appl. Opt. 41, 654–657 (2002).
    [CrossRef]
  14. S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004).
    [CrossRef]
  15. A. J. Smits, A. E. Perry, and P. H. Hoffmann, “The response to temperature fluctuations of a constant-current hot-wire anemometer,” J. Phys. E 11, 909–914 (1978).
    [CrossRef]
  16. D. Bestion, J. Gaviglio, and J. P. Bonnet, “Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows,” Rev. Sci. Instrum. 54, 1513–1524 (1983).
    [CrossRef]
  17. A. J. Smits, K. Hayakawa, and K. C. Muck, “Constant temperature hot-wire anemometer practice in supersonic flows,” Exp. Fluids 1, 83–92 (1983).
    [CrossRef]
  18. E. F. Spina and C. B. McGinley, “Constant-temperature anemometry in hypersonic flow: critical issues and sample results,” Exp. Fluids 17, 365–374 (1994).
    [CrossRef]
  19. V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012).
    [CrossRef]
  20. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  21. M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
    [CrossRef]
  22. D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
    [CrossRef]
  23. S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
    [CrossRef]
  24. M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
    [CrossRef]
  25. C. M. Vest, “Interferometry of strongly refracting axisymmetric phase objects,” Appl. Opt. 14, 1601–1606 (1975).
    [CrossRef]
  26. D. Wang and T. Zhuang, “The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography,” Opt. Lasers Eng. 36, 289–297 (2001).
    [CrossRef]
  27. A. J. M. Oprins, G. J. Heynderickx, and G. B. Marin, “Three-dimensional asymmetric flow and temperature fields in cracking furnaces,” Ind. Eng. Chem. Res. 40, 5087–5094 (2001).
    [CrossRef]
  28. M. Antovs, “New three-dimensional configuration of multidirectional phase tomograph,” Proc. SPIE 6609, 66090R (2007).
  29. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305–310 (2000).
    [CrossRef]
  30. I. H. Lira and C. M. Vest, “Refraction correction in holographic interferometry and tomography of transparent objects,” Appl. Opt. 26, 3919–3928 (1987).
    [CrossRef]
  31. H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
    [CrossRef]
  32. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
    [CrossRef]
  33. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).
  34. J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).
    [CrossRef]
  35. M. Gawlowski, K. E. Kelly, L. A. Marcotte, and A. Schönbucher, “Determining the effect of species composition on temperature fields of tank flames using real-time holographic interferometry,” Appl. Opt. 48, 4625–4636 (2009).
    [CrossRef]
  36. D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
    [CrossRef]
  37. W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
    [CrossRef]
  38. A. Ito, Y. Kudo, and H. Oyama, “Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations,” Combust. Flame 142, 428–437 (2005).
    [CrossRef]
  39. R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).
  40. A. Glezer and M. Amitay, “Synthetic jets,” Annu. Rev. Fluid Mech. 34, 503–529 (2002).
    [CrossRef]
  41. B. L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids 34, 467–472 (2003).
  42. Z. Trávníček and V. Tesař, “Annular synthetic jet used for impinging flow mass-transfer,” Int. J. Heat Mass Transfer 46, 3291–3297 (2003).
    [CrossRef]
  43. R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).
  44. R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
    [CrossRef]
  45. S. R. Deans, The Radon Transform and Some of Its Applications (Dover, 2007).
  46. G. Beylkin, “The inversion problem and applications of the generalized Radon transform,” Commun. Pure Appl. Math. 37, 579–599 (1984).
    [CrossRef]
  47. G. Beylkin, “Discrete radon transform,” IEEE Trans. Acoust. Speech and Signal Process. 35, 162–172 (1987).
    [CrossRef]
  48. T. M. Venema and J. D. Schmidt, “Optical phase unwrapping in the presence of branch points,” Opt. Express 16, 6985–6998 (2008).
    [CrossRef]

2012

V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012).
[CrossRef]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
[CrossRef]

2011

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
[CrossRef]

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

2009

2008

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).
[CrossRef]

T. M. Venema and J. D. Schmidt, “Optical phase unwrapping in the presence of branch points,” Opt. Express 16, 6985–6998 (2008).
[CrossRef]

2007

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

M. Antovs, “New three-dimensional configuration of multidirectional phase tomograph,” Proc. SPIE 6609, 66090R (2007).

2005

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092–2094 (2005).
[CrossRef]

A. Ito, Y. Kudo, and H. Oyama, “Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations,” Combust. Flame 142, 428–437 (2005).
[CrossRef]

R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).

2004

S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004).
[CrossRef]

2003

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

B. L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids 34, 467–472 (2003).

Z. Trávníček and V. Tesař, “Annular synthetic jet used for impinging flow mass-transfer,” Int. J. Heat Mass Transfer 46, 3291–3297 (2003).
[CrossRef]

2002

2001

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

D. Wang and T. Zhuang, “The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography,” Opt. Lasers Eng. 36, 289–297 (2001).
[CrossRef]

A. J. M. Oprins, G. J. Heynderickx, and G. B. Marin, “Three-dimensional asymmetric flow and temperature fields in cracking furnaces,” Ind. Eng. Chem. Res. 40, 5087–5094 (2001).
[CrossRef]

2000

M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305–310 (2000).
[CrossRef]

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[CrossRef]

1994

C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).
[CrossRef]

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33, 1983–1988 (1994).
[CrossRef]

C. Shakher, A. J. P. Daniel, and S. K. Angra, “Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings,” Opt. Eng. 33, 2663–2669 (1994).
[CrossRef]

E. F. Spina and C. B. McGinley, “Constant-temperature anemometry in hypersonic flow: critical issues and sample results,” Exp. Fluids 17, 365–374 (1994).
[CrossRef]

1993

1992

H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
[CrossRef]

1988

R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

1987

1984

G. Beylkin, “The inversion problem and applications of the generalized Radon transform,” Commun. Pure Appl. Math. 37, 579–599 (1984).
[CrossRef]

1983

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
[CrossRef]

D. Bestion, J. Gaviglio, and J. P. Bonnet, “Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows,” Rev. Sci. Instrum. 54, 1513–1524 (1983).
[CrossRef]

A. J. Smits, K. Hayakawa, and K. C. Muck, “Constant temperature hot-wire anemometer practice in supersonic flows,” Exp. Fluids 1, 83–92 (1983).
[CrossRef]

1981

M. Giglio, S. Musazzi, and U. Perini, “A white light speckle Schlieren technique,” Opt. Commun. 36, 117–120 (1981).
[CrossRef]

E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
[CrossRef]

1978

A. J. Smits, A. E. Perry, and P. H. Hoffmann, “The response to temperature fluctuations of a constant-current hot-wire anemometer,” J. Phys. E 11, 909–914 (1978).
[CrossRef]

1975

1972

1963

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Ahmadi, M.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

Amitay, M.

A. Glezer and M. Amitay, “Synthetic jets,” Annu. Rev. Fluid Mech. 34, 503–529 (2002).
[CrossRef]

Angra, S. K.

C. Shakher, A. J. P. Daniel, and S. K. Angra, “Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings,” Opt. Eng. 33, 2663–2669 (1994).
[CrossRef]

Antovs, M.

M. Antovs, “New three-dimensional configuration of multidirectional phase tomograph,” Proc. SPIE 6609, 66090R (2007).

Ashjaee, M.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

Bar-Ziv, E.

Bestion, D.

D. Bestion, J. Gaviglio, and J. P. Bonnet, “Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows,” Rev. Sci. Instrum. 54, 1513–1524 (1983).
[CrossRef]

Beylkin, G.

G. Beylkin, “Discrete radon transform,” IEEE Trans. Acoust. Speech and Signal Process. 35, 162–172 (1987).
[CrossRef]

G. Beylkin, “The inversion problem and applications of the generalized Radon transform,” Commun. Pure Appl. Math. 37, 579–599 (1984).
[CrossRef]

Bonnet, J. P.

D. Bestion, J. Gaviglio, and J. P. Bonnet, “Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows,” Rev. Sci. Instrum. 54, 1513–1524 (1983).
[CrossRef]

Cattafesta, L.

R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).

Childs, P. R. N.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[CrossRef]

Daniel, A. J. P.

C. Shakher, A. J. P. Daniel, and S. K. Angra, “Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings,” Opt. Eng. 33, 2663–2669 (1994).
[CrossRef]

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33, 1983–1988 (1994).
[CrossRef]

Deans, S. R.

S. R. Deans, The Radon Transform and Some of Its Applications (Dover, 2007).

Döbbeling, K.

Dolecek, R.

V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012).
[CrossRef]

R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).

Fisher, S. A.

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Fomin, N. A.

N. A. Fomin, Speckle Photography for Fluid Mechanics Measurements (Springer, 1998).

Gaviglio, J.

D. Bestion, J. Gaviglio, and J. P. Bonnet, “Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows,” Rev. Sci. Instrum. 54, 1513–1524 (1983).
[CrossRef]

Gawlowski, M.

Giammartini, S.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

Giglio, M.

M. Giglio, S. Musazzi, and U. Perini, “A white light speckle Schlieren technique,” Opt. Commun. 36, 117–120 (1981).
[CrossRef]

Glatt, I.

Glezer, A.

A. Glezer and M. Amitay, “Synthetic jets,” Annu. Rev. Fluid Mech. 34, 503–529 (2002).
[CrossRef]

Goharkhah, M.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

Goldstein, R.

R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Greenwood, J. R.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[CrossRef]

Guj, G.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

Haumann, J.

Hayakawa, K.

A. J. Smits, K. Hayakawa, and K. C. Muck, “Constant temperature hot-wire anemometer practice in supersonic flows,” Exp. Fluids 1, 83–92 (1983).
[CrossRef]

Heynderickx, G. J.

A. J. M. Oprins, G. J. Heynderickx, and G. B. Marin, “Three-dimensional asymmetric flow and temperature fields in cracking furnaces,” Ind. Eng. Chem. Res. 40, 5087–5094 (2001).
[CrossRef]

Hoffmann, P. H.

A. J. Smits, A. E. Perry, and P. H. Hoffmann, “The response to temperature fluctuations of a constant-current hot-wire anemometer,” J. Phys. E 11, 909–914 (1978).
[CrossRef]

Holman, R.

R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).

Hong, G.

S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004).
[CrossRef]

Ito, A.

A. Ito, Y. Kudo, and H. Oyama, “Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations,” Combust. Flame 142, 428–437 (2005).
[CrossRef]

Jäger, H.

H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
[CrossRef]

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).

Kafri, O.

Kampmann, S.

Kelly, K. E.

Keren, E.

Kim, M. K.

Kopecký, V.

R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).

Kreis, T.

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

Kudo, Y.

A. Ito, Y. Kudo, and H. Oyama, “Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations,” Combust. Flame 142, 428–437 (2005).
[CrossRef]

Lédl, V.

V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012).
[CrossRef]

R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).

Leipertz, A.

Leung, C. W.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).
[CrossRef]

Lira, I. H.

Long, C. A.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[CrossRef]

Lv, W.

Mallinson, S. G.

S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004).
[CrossRef]

Marcotte, L. A.

Marin, G. B.

A. J. M. Oprins, G. J. Heynderickx, and G. B. Marin, “Three-dimensional asymmetric flow and temperature fields in cracking furnaces,” Ind. Eng. Chem. Res. 40, 5087–5094 (2001).
[CrossRef]

McGinley, C. B.

E. F. Spina and C. B. McGinley, “Constant-temperature anemometry in hypersonic flow: critical issues and sample results,” Exp. Fluids 17, 365–374 (1994).
[CrossRef]

Mittal, R.

R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).

Muck, K. C.

A. J. Smits, K. Hayakawa, and K. C. Muck, “Constant temperature hot-wire anemometer practice in supersonic flows,” Exp. Fluids 1, 83–92 (1983).
[CrossRef]

Musazzi, S.

M. Giglio, S. Musazzi, and U. Perini, “A white light speckle Schlieren technique,” Opt. Commun. 36, 117–120 (1981).
[CrossRef]

Nasr, B.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

Neger, T.

H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
[CrossRef]

Nirala, A. K.

C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).
[CrossRef]

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33, 1983–1988 (1994).
[CrossRef]

Oprins, A. J. M.

A. J. M. Oprins, G. J. Heynderickx, and G. B. Marin, “Three-dimensional asymmetric flow and temperature fields in cracking furnaces,” Ind. Eng. Chem. Res. 40, 5087–5094 (2001).
[CrossRef]

Oyama, H.

A. Ito, Y. Kudo, and H. Oyama, “Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations,” Combust. Flame 142, 428–437 (2005).
[CrossRef]

Perini, U.

M. Giglio, S. Musazzi, and U. Perini, “A white light speckle Schlieren technique,” Opt. Commun. 36, 117–120 (1981).
[CrossRef]

Perry, A. E.

A. J. Smits, A. E. Perry, and P. H. Hoffmann, “The response to temperature fluctuations of a constant-current hot-wire anemometer,” J. Phys. E 11, 909–914 (1978).
[CrossRef]

Philipp, H.

H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
[CrossRef]

Psota, P.

V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012).
[CrossRef]

R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).

Qi, J. A.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).
[CrossRef]

Reizes, J. A.

S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004).
[CrossRef]

Reuss, D. L.

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
[CrossRef]

Saffar Avval, M.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

Sattelmayer, T.

Schmidt, J. D.

Schnars, U.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).

Schönbucher, A.

Shakher, C.

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
[CrossRef]

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings,” Appl. Opt. 41, 654–657 (2002).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33, 1983–1988 (1994).
[CrossRef]

C. Shakher, A. J. P. Daniel, and S. K. Angra, “Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings,” Opt. Eng. 33, 2663–2669 (1994).
[CrossRef]

C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).
[CrossRef]

Sharma, S.

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
[CrossRef]

Sheoran, G.

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
[CrossRef]

Silva, D. E.

Singh, P.

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

Smith, B. L.

R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).

B. L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids 34, 467–472 (2003).

Smits, A. J.

A. J. Smits, K. Hayakawa, and K. C. Muck, “Constant temperature hot-wire anemometer practice in supersonic flows,” Exp. Fluids 1, 83–92 (1983).
[CrossRef]

A. J. Smits, A. E. Perry, and P. H. Hoffmann, “The response to temperature fluctuations of a constant-current hot-wire anemometer,” J. Phys. E 11, 909–914 (1978).
[CrossRef]

Spina, E. F.

E. F. Spina and C. B. McGinley, “Constant-temperature anemometry in hypersonic flow: critical issues and sample results,” Exp. Fluids 17, 365–374 (1994).
[CrossRef]

Stella, A.

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

Swift, G. W.

B. L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids 34, 467–472 (2003).

Tesar, V.

Z. Trávníček and V. Tesař, “Annular synthetic jet used for impinging flow mass-transfer,” Int. J. Heat Mass Transfer 46, 3291–3297 (2003).
[CrossRef]

Thakur, M.

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings,” Appl. Opt. 41, 654–657 (2002).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Trávnícek, Z.

Z. Trávníček and V. Tesař, “Annular synthetic jet used for impinging flow mass-transfer,” Int. J. Heat Mass Transfer 46, 3291–3297 (2003).
[CrossRef]

Utturkar, Y.

R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).

Václavík, J.

R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).

Venema, T. M.

Vest, C. M.

Vít, T.

V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012).
[CrossRef]

R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).

Vyas, A. L.

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings,” Appl. Opt. 41, 654–657 (2002).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

Wang, D.

D. Wang and T. Zhuang, “The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography,” Opt. Lasers Eng. 36, 289–297 (2001).
[CrossRef]

Werner, C.

R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Westbury, P. S.

S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004).
[CrossRef]

Wilkie, D.

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Woisetschläger, J.

H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
[CrossRef]

Wong, W. O.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).
[CrossRef]

Yousefi, T.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

Yu, L.

Yuen, D. W.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).
[CrossRef]

Zebker, H.

R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

Zhou, H. C.

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
[CrossRef]

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

Zhu, J. R.

Zhuang, T.

D. Wang and T. Zhuang, “The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography,” Opt. Lasers Eng. 36, 289–297 (2001).
[CrossRef]

AIAA J.

R. Holman, Y. Utturkar, R. Mittal, B. L. Smith, and L. Cattafesta, “Formation criterion for synthetic jets,” AIAA J. 43, 2110–2116 (2005).

Annu. Rev. Fluid Mech.

A. Glezer and M. Amitay, “Synthetic jets,” Annu. Rev. Fluid Mech. 34, 503–529 (2002).
[CrossRef]

Appl. Opt.

M. Gawlowski, K. E. Kelly, L. A. Marcotte, and A. Schönbucher, “Determining the effect of species composition on temperature fields of tank flames using real-time holographic interferometry,” Appl. Opt. 48, 4625–4636 (2009).
[CrossRef]

W. Lv, H. C. Zhou, and J. R. Zhu, “Implementation of tridirectional large lateral shearing displacement interferometry in temperature measurement of a diffused ethylene flame,” Appl. Opt. 50, 3924–3936 (2011).
[CrossRef]

C. Shakher and A. K. Nirala, “Measurement of temperature using speckle shearing interferometry,” Appl. Opt. 33, 2125–2127 (1994).
[CrossRef]

S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, and T. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993).
[CrossRef]

E. Keren, E. Bar-Ziv, I. Glatt, and O. Kafri, “Measurements of temperature distribution of flames by moire deflectometry,” Appl. Opt. 20, 4263–4266 (1981).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature profile of a gaseous flame with a Lau phase interferometer that has circular gratings,” Appl. Opt. 41, 654–657 (2002).
[CrossRef]

D. E. Silva, “Talbot interferometer for radial and lateral derivatives,” Appl. Opt. 11, 2613–2624 (1972).
[CrossRef]

C. M. Vest, “Interferometry of strongly refracting axisymmetric phase objects,” Appl. Opt. 14, 1601–1606 (1975).
[CrossRef]

I. H. Lira and C. M. Vest, “Refraction correction in holographic interferometry and tomography of transparent objects,” Appl. Opt. 26, 3919–3928 (1987).
[CrossRef]

Appl. Therm. Eng.

J. A. Qi, W. O. Wong, C. W. Leung, and D. W. Yuen, “Temperature field measurement of a premixed butane/air slot laminar flame jet with Mach–Zehnder interferometry,” Appl. Therm. Eng. 28, 1806–1812 (2008).
[CrossRef]

Combust. Flame

D. L. Reuss, “Temperature measurements in a radially symmetric flame using holographic interferometry,” Combust. Flame 49, 207–219 (1983).
[CrossRef]

A. Ito, Y. Kudo, and H. Oyama, “Propagation and extinction mechanisms of opposed-flow flame spread over PMMA for different sample orientations,” Combust. Flame 142, 428–437 (2005).
[CrossRef]

Commun. Pure Appl. Math.

G. Beylkin, “The inversion problem and applications of the generalized Radon transform,” Commun. Pure Appl. Math. 37, 579–599 (1984).
[CrossRef]

EPJ Web Conf.

V. Lédl, T. Vít, R. Doleček, and P. Psota, “Digital holografic interferometry used for identification of 2D temperature field,” EPJ Web Conf. 25, 02014 (2012).
[CrossRef]

Exp. Fluids

A. J. Smits, K. Hayakawa, and K. C. Muck, “Constant temperature hot-wire anemometer practice in supersonic flows,” Exp. Fluids 1, 83–92 (1983).
[CrossRef]

E. F. Spina and C. B. McGinley, “Constant-temperature anemometry in hypersonic flow: critical issues and sample results,” Exp. Fluids 17, 365–374 (1994).
[CrossRef]

A. Stella, G. Guj, and S. Giammartini, “Measurement of axisymmetric temperature fields using reference beam and shearing interferometry for application to flames,” Exp. Fluids 29, 1–12 (2000).
[CrossRef]

B. L. Smith and G. W. Swift, “A comparison between synthetic jets and continuous jets,” Exp. Fluids 34, 467–472 (2003).

Exp. Therm. Fluid Sci.

S. G. Mallinson, J. A. Reizes, G. Hong, and P. S. Westbury, “Analysis of hot-wire anemometry data obtained in a synthetic jet flow,” Exp. Therm. Fluid Sci. 28, 265–272(2004).
[CrossRef]

Fuel

D. Y. Zhang and H. C. Zhou, “Temperature measurement by holographic interferometry for non-premixed ethylene-air flame with a series of state relationships,” Fuel 86, 1552–1559 (2007).
[CrossRef]

IEEE Trans. Acoust. Speech and Signal Process.

G. Beylkin, “Discrete radon transform,” IEEE Trans. Acoust. Speech and Signal Process. 35, 162–172 (1987).
[CrossRef]

Ind. Eng. Chem. Res.

A. J. M. Oprins, G. J. Heynderickx, and G. B. Marin, “Three-dimensional asymmetric flow and temperature fields in cracking furnaces,” Ind. Eng. Chem. Res. 40, 5087–5094 (2001).
[CrossRef]

Int. J. Heat Mass Transfer

Z. Trávníček and V. Tesař, “Annular synthetic jet used for impinging flow mass-transfer,” Int. J. Heat Mass Transfer 46, 3291–3297 (2003).
[CrossRef]

J. Phys. E

A. J. Smits, A. E. Perry, and P. H. Hoffmann, “The response to temperature fluctuations of a constant-current hot-wire anemometer,” J. Phys. E 11, 909–914 (1978).
[CrossRef]

Measurement

H. Philipp, T. Neger, H. Jäger, and J. Woisetschläger, “Optical tomography of phase objects by holographic interferometry,” Measurement 10, 170–181 (1992).
[CrossRef]

Opt. Commun.

M. Giglio, S. Musazzi, and U. Perini, “A white light speckle Schlieren technique,” Opt. Commun. 36, 117–120 (1981).
[CrossRef]

Opt. Eng.

C. Shakher, A. J. P. Daniel, and A. K. Nirala, “Temperature profile measurement of axisymmetric gaseous flames using speckle photography, speckle shearing interferometry, and Talbot interferometry,” Opt. Eng. 33, 1983–1988 (1994).
[CrossRef]

P. Singh and C. Shakher, “Measurement of the temperature of a gaseous flame using a shearing plate,” Opt. Eng. 42, 80–85 (2003).
[CrossRef]

C. Shakher, A. J. P. Daniel, and S. K. Angra, “Measurement of the temperature profile of an atomic absorption spectrophotometer burner using a Talbot interferometer with circular gratings,” Opt. Eng. 33, 2663–2669 (1994).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

M. Ahmadi, M. Saffar Avval, T. Yousefi, M. Goharkhah, B. Nasr, and M. Ashjaee, “Temperature measurement of a premixed radially symmetric methane flame jet using the Mach–Zehnder Interferometry,” Opt. Lasers Eng. 49, 859–865 (2011).
[CrossRef]

S. Sharma, G. Sheoran, and C. Shakher, “Investigation of temperature and temperature profile in axi-symmetric flame of butane torch burner using digital holographic interferometry,” Opt. Lasers Eng. 50, 1436–1444 (2012).
[CrossRef]

M. Thakur, A. L. Vyas, and C. Shakher, “Measurement of temperature and temperature profile of an axisymmetric gaseous flames using Lau phase interferometer with linear gratings,” Opt. Lasers Eng. 36, 373–380 (2001).
[CrossRef]

D. Wang and T. Zhuang, “The measurement of 3-D asymmetric temperature field by using real time laser interferometric tomography,” Opt. Lasers Eng. 36, 289–297 (2001).
[CrossRef]

Opt. Lett.

Proc. Inst. Mech. Eng.

D. Wilkie and S. A. Fisher, “Measurement of temperature by Mach–Zehnder interferometry,” Proc. Inst. Mech. Eng. 178, 461–472 (1963).
[CrossRef]

Proc. SPIE

M. Antovs, “New three-dimensional configuration of multidirectional phase tomograph,” Proc. SPIE 6609, 66090R (2007).

Radio Sci.

R. Goldstein, H. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988).
[CrossRef]

Rev. Sci. Instrum.

P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Rev. Sci. Instrum. 71, 2959–2978 (2000).
[CrossRef]

D. Bestion, J. Gaviglio, and J. P. Bonnet, “Comparison between constant-current and constant-temperature hot-wire anemometers in high-speed flows,” Rev. Sci. Instrum. 54, 1513–1524 (1983).
[CrossRef]

Other

N. A. Fomin, Speckle Photography for Fluid Mechanics Measurements (Springer, 1998).

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2004).

S. R. Deans, The Radon Transform and Some of Its Applications (Dover, 2007).

R. Doleček, V. Lédl, V. Kopecký, P. Psota, J. Václavík, and T. Vít, “Prospects of digital holographic interferometry in heat transfer measurement,” Experimental Fluid Mechanics(Liberec, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Holographic setup for asymmetric temperature field measurement. (BS, beam splitter; M, mirror; SF, spatial filter; CO, collimating objective; O, focusing objective; FG, function generator).

Fig. 2.
Fig. 2.

Graphical display of synchronization and triggering between the phenomenon (the sine curve) and the camera, which enables to precisely capture user defined relative phase φ (circular marks) of the phenomenon very precisely (TPHEN—period of the phenomenon, φ—relative phase of the phenomenon, TCAM—capture time of the camera).

Fig. 3.
Fig. 3.

Sinogram and reconstructed image.

Fig. 4.
Fig. 4.

Dynamic evaluation of the phase field (units of colorbar—radians): angle of view 40° in different relative delays 2, 8, and 16 ms.

Fig. 5.
Fig. 5.

Up: Sequence of chosen phase fields (i=13,7)). Down: (a) the resulting phase field after averaging of seven phase fields from different cycles of the phenomenon (units for all phase fields are radians). (b) Standard deviation calculated for every pixel.

Fig. 6.
Fig. 6.

Projections of the measured phenomenon phase field at 8 ms for angles: (a) 0°, (b) 40°, and (c) 80°.

Fig. 7.
Fig. 7.

3D volume data of the computed temperature field (°C) for relative delay time 8 ms (lateral resolution: 1voxel=8mm3).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ui(n,m)=exp(jπλd((nNΔε)2+(mMΔη)2))×k=1Nl=1Mhi(kΔε,lΔη)r(kΔε,lΔη)exp(jπλd((kΔε)2+(lΔη)2))exp(j2π(knN+lmM)),
Ii(n,m)=|Ui(n,m)|2,φi(n,m)=arctan(Im(Ui(n,m))/Re(Ui(n,m))).
Δφ={φ1φ2ifφ1φ2φ1φ2+2πifφ1<φ2.
Δφ=2π/λL(Δnn)dl,
T=KP/(n1)R,
g(s,θ)=+f(x,y)δ(xcosθ+ysinθs)dxdy,
f(x,y)=0πg(xcosθ+ysinθ,θ)dθ.

Metrics