K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002–23003 (2012).

[CrossRef]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48, 5834–5841 (2009).

[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).

[CrossRef]

H. Sakata and Y. Sakamoto, “Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space,” Appl. Opt. 48, H212–H221 (2009).

[CrossRef]

Y. Pan, X. Xu, S. Solanki, X. Liang, R. Tanjung, C. Tan, and T.-C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).

[CrossRef]

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).

[CrossRef]

L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47, 1567–1574 (2008).

[CrossRef]

H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127(2008).

[CrossRef]

K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47, D110–D116 (2008).

[CrossRef]

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).

[CrossRef]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).

[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).

[CrossRef]

T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10, 299–305 (1993).

[CrossRef]

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).

[CrossRef]

R. N. Bracewell, K. Y. Chang, A. K. Jha, and Y.-H. Wang, “Affine theorem for two-dimensional Fourier transform,” Electron. Lett. 29, 304–306 (1993).

[CrossRef]

H. J. Rabal, N. Bolognini, and E. E. Sicre, “Diffraction by a tilted aperture,” Opt. Acta 32, 1309–1311 (1985).

[CrossRef]

S. Ganci, “Fourier diffraction through a tilted slit,” Eur. J. Phys. 2, 158–160 (1981).

[CrossRef]

T. Greville, “Some applications of the pseudoinverse of a matrix,” SIAM Rev. 2, 15–22 (1960).

[CrossRef]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed. (Springer-Verlag, 2003).

H. J. Rabal, N. Bolognini, and E. E. Sicre, “Diffraction by a tilted aperture,” Opt. Acta 32, 1309–1311 (1985).

[CrossRef]

R. N. Bracewell, K. Y. Chang, A. K. Jha, and Y.-H. Wang, “Affine theorem for two-dimensional Fourier transform,” Electron. Lett. 29, 304–306 (1993).

[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).

[CrossRef]

R. N. Bracewell, K. Y. Chang, A. K. Jha, and Y.-H. Wang, “Affine theorem for two-dimensional Fourier transform,” Electron. Lett. 29, 304–306 (1993).

[CrossRef]

S. Ganci, “Fourier diffraction through a tilted slit,” Eur. J. Phys. 2, 158–160 (1981).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

T. Greville, “Some applications of the pseudoinverse of a matrix,” SIAM Rev. 2, 15–22 (1960).

[CrossRef]

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed. (Springer-Verlag, 2003).

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. (Cambridge University, 2003).

R. N. Bracewell, K. Y. Chang, A. K. Jha, and Y.-H. Wang, “Affine theorem for two-dimensional Fourier transform,” Electron. Lett. 29, 304–306 (1993).

[CrossRef]

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).

[CrossRef]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002–23003 (2012).

[CrossRef]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).

[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).

[CrossRef]

K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47, D110–D116 (2008).

[CrossRef]

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).

[CrossRef]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).

[CrossRef]

K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).

[CrossRef]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002–23003 (2012).

[CrossRef]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).

[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).

[CrossRef]

W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics, 2nd ed. (McGraw-Hill, 1979).

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002–23003 (2012).

[CrossRef]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).

[CrossRef]

H. J. Rabal, N. Bolognini, and E. E. Sicre, “Diffraction by a tilted aperture,” Opt. Acta 32, 1309–1311 (1985).

[CrossRef]

H. J. Rabal, N. Bolognini, and E. E. Sicre, “Diffraction by a tilted aperture,” Opt. Acta 32, 1309–1311 (1985).

[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).

[CrossRef]

W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics, 2nd ed. (McGraw-Hill, 1979).

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).

[CrossRef]

R. N. Bracewell, K. Y. Chang, A. K. Jha, and Y.-H. Wang, “Affine theorem for two-dimensional Fourier transform,” Electron. Lett. 29, 304–306 (1993).

[CrossRef]

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. (Cambridge University, 2003).

S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47, D55–D62 (2008).

[CrossRef]

D. Leseberg and C. Frére, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27, 3020–3024 (1988).

[CrossRef]

C. Frére and D. Leseberg, “Large objects reconstructed from computer-generated holograms,” Appl. Opt. 28, 2422–2425 (1989).

[CrossRef]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44, 4607–4614 (2005).

[CrossRef]

K. Matsushima, “Formulation of the rotational transformation of wave fields and their application to digital holography,” Appl. Opt. 47, D110–D116 (2008).

[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48, H54–H63 (2009).

[CrossRef]

H. Nishi, K. Matsushima, and S. Nakahara, “Rendering of specular surfaces in polygon-based computer-generated holograms,” Appl. Opt. 50, H245–H252 (2011).

[CrossRef]

L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47, 1567–1574 (2008).

[CrossRef]

H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47, D117–D127(2008).

[CrossRef]

H. Sakata and Y. Sakamoto, “Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space,” Appl. Opt. 48, H212–H221 (2009).

[CrossRef]

H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48, 5834–5841 (2009).

[CrossRef]

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).

[CrossRef]

R. N. Bracewell, K. Y. Chang, A. K. Jha, and Y.-H. Wang, “Affine theorem for two-dimensional Fourier transform,” Electron. Lett. 29, 304–306 (1993).

[CrossRef]

S. Ganci, “Fourier diffraction through a tilted slit,” Eur. J. Phys. 2, 158–160 (1981).

[CrossRef]

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2, 28–34 (1993).

[CrossRef]

K. Matsushima, H. Nishi, and S. Nakahara, “Simple wave-field rendering for photorealistic reconstruction in polygon-based high-definition computer holography,” J. Electron. Imaging 21, 023002–23003 (2012).

[CrossRef]

L. Onural, “Exact solution for scalar diffraction between tilted and translated planes using impulse functions over a surface,” J. Opt. Soc. Am. A 28, 290–295 (2011).

[CrossRef]

T. Tommasi and B. Bianco, “Computer-generated holograms of tilted planes by a spatial frequency approach,” J. Opt. Soc. Am. A 10, 299–305 (1993).

[CrossRef]

K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).

[CrossRef]

H. J. Rabal, N. Bolognini, and E. E. Sicre, “Diffraction by a tilted aperture,” Opt. Acta 32, 1309–1311 (1985).

[CrossRef]

K. Matsushima, “Exact hidden-surface removal in digitally synthetic full-parallax holograms,” Proc. SPIE 5742, 25–32 (2005).

[CrossRef]

T. Greville, “Some applications of the pseudoinverse of a matrix,” SIAM Rev. 2, 15–22 (1960).

[CrossRef]

W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics, 2nd ed. (McGraw-Hill, 1979).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. (Cambridge University, 2003).

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd ed. (Springer-Verlag, 2003).