Abstract

This paper discusses processing techniques for an adaptive digital holographic video service in various reconstruction environments, and proposes two new scalable coding schemes. The proposed schemes are constructed according to the hologram generation or acquisition schemes: hologram-based resolution-scalable coding (HRS) and light source-based signal-to-noise ratio scalable coding (LSS). HRS is applied for holograms that are already acquired or generated, while LSS is applied to the light sources before generating digital holograms. In the LSS scheme, the light source information is lossless coded because it is too important to lose, while the HRS scheme adopts a lossy coding method. In an experiment, we provide eight stages of an HRS scheme whose data compression ratios range from 11 to 1001 for each layered data. For LSS, four layers and 16 layers of scalable coding schemes are provided. We experimentally show that the proposed techniques make it possible to service a digital hologram video adaptively to the various displays with different resolutions, computation capabilities of the receiver side, or bandwidths of the network.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi and F. Okano eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  2. P. Hariharan, Basics of Holography (Cambridge University, 2002).
  3. F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol. 11, 332–344 (2001).
    [CrossRef]
  4. J. Reichel, H. Schwarz, and M. Wien, “Scalable Video Coding—Working Draft 1,” Doc. JVT-N020 (2005).
  5. Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
    [CrossRef]
  6. H. Yoshikawa and K. Sasaki, “Information reduction by limited resolution for electro-holographic display,” Proc. SPIE 1914, 206–211 (1993).
    [CrossRef]
  7. H. Yoshikawa and K. Sasaki, “Image scaling for electro-holographic display,” Proc. SPIE 2176, 12–22 (1994).
    [CrossRef]
  8. H. Yoshikawa, “Digital holographic signal processing,” in Proceedings of TAO First International Symposium on Three Dimensional Image Communication Technologies (TAO, 1993), paper S-4-2.
  9. H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” in Proc. SPIE 2652, 2–9 (1996).
    [CrossRef]
  10. T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43, 2233–2238 (2004).
    [CrossRef]
  11. T. J. Naughton, Y. Frauel, E. Tajahuerce, and B. Javidi, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
    [CrossRef]
  12. M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
    [CrossRef]
  13. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
    [CrossRef]
  14. Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “Lossy coding technique for digital holographic signal,” Opt. Eng. 45, 065802(2006).
    [CrossRef]
  15. Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
    [CrossRef]
  16. Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
    [CrossRef]
  17. Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283, 4261–4270 (2010).
  18. L. T. Bang, Z. Ali, P. D. Quang, J.-H. Park, and N. Kim, “Compression of digital hologram for three-dimensional object using Wavelet–Bandelets transform,” Opt. Express 19, 8019–8031 (2011).
    [CrossRef]
  19. http://www.youtube.com/watch?v=WpI0PWALdLE&feature=plcp .
  20. Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Cell-based hardware architecture for full-parallel generation algorithm of digital holograms,” Opt. Express 19, 8750–8761(2011).
    [CrossRef]
  21. http://developer.nvidia.com/category/zone/cuda-zone .

2011

2010

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283, 4261–4270 (2010).

2007

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

2006

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “Lossy coding technique for digital holographic signal,” Opt. Eng. 45, 065802(2006).
[CrossRef]

2004

T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43, 2233–2238 (2004).
[CrossRef]

2003

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
[CrossRef]

2002

2001

F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol. 11, 332–344 (2001).
[CrossRef]

1996

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” in Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

1994

H. Yoshikawa and K. Sasaki, “Image scaling for electro-holographic display,” Proc. SPIE 2176, 12–22 (1994).
[CrossRef]

1993

H. Yoshikawa and K. Sasaki, “Information reduction by limited resolution for electro-holographic display,” Proc. SPIE 1914, 206–211 (1993).
[CrossRef]

Ali, Z.

Bae, J.-W.

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Bang, L. T.

Bertaux, N.

Blu, T.

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
[CrossRef]

Choi, H.-J.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Cell-based hardware architecture for full-parallel generation algorithm of digital holograms,” Opt. Express 19, 8750–8761(2011).
[CrossRef]

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283, 4261–4270 (2010).

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “Lossy coding technique for digital holographic signal,” Opt. Eng. 45, 065802(2006).
[CrossRef]

Frauel, Y.

Hariharan, P.

P. Hariharan, Basics of Holography (Cambridge University, 2002).

Javidi, B.

Kang, H.-C.

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Kim, D.-W.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Cell-based hardware architecture for full-parallel generation algorithm of digital holograms,” Opt. Express 19, 8750–8761(2011).
[CrossRef]

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283, 4261–4270 (2010).

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “Lossy coding technique for digital holographic signal,” Opt. Eng. 45, 065802(2006).
[CrossRef]

Kim, N.

Lee, S.-H.

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Li, S.

F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol. 11, 332–344 (2001).
[CrossRef]

Liebling, M.

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
[CrossRef]

Matoba, O.

Naughton, T. J.

Park, J.-H.

Quang, P. D.

Reichel, J.

J. Reichel, H. Schwarz, and M. Wien, “Scalable Video Coding—Working Draft 1,” Doc. JVT-N020 (2005).

Sasaki, K.

H. Yoshikawa and K. Sasaki, “Image scaling for electro-holographic display,” Proc. SPIE 2176, 12–22 (1994).
[CrossRef]

H. Yoshikawa and K. Sasaki, “Information reduction by limited resolution for electro-holographic display,” Proc. SPIE 1914, 206–211 (1993).
[CrossRef]

Schwarz, H.

J. Reichel, H. Schwarz, and M. Wien, “Scalable Video Coding—Working Draft 1,” Doc. JVT-N020 (2005).

Seo, Y.-H.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Cell-based hardware architecture for full-parallel generation algorithm of digital holograms,” Opt. Express 19, 8750–8761(2011).
[CrossRef]

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283, 4261–4270 (2010).

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “Lossy coding technique for digital holographic signal,” Opt. Eng. 45, 065802(2006).
[CrossRef]

Tajahuerce, E.

Tamai, J.

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” in Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

Unser, M.

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
[CrossRef]

Wien, M.

J. Reichel, H. Schwarz, and M. Wien, “Scalable Video Coding—Working Draft 1,” Doc. JVT-N020 (2005).

Wu, F.

F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol. 11, 332–344 (2001).
[CrossRef]

Yoo, J.-S.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Cell-based hardware architecture for full-parallel generation algorithm of digital holograms,” Opt. Express 19, 8750–8761(2011).
[CrossRef]

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283, 4261–4270 (2010).

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Yoshikawa, H.

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” in Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

H. Yoshikawa and K. Sasaki, “Image scaling for electro-holographic display,” Proc. SPIE 2176, 12–22 (1994).
[CrossRef]

H. Yoshikawa and K. Sasaki, “Information reduction by limited resolution for electro-holographic display,” Proc. SPIE 1914, 206–211 (1993).
[CrossRef]

H. Yoshikawa, “Digital holographic signal processing,” in Proceedings of TAO First International Symposium on Three Dimensional Image Communication Technologies (TAO, 1993), paper S-4-2.

Zhang, Y.-Q.

F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol. 11, 332–344 (2001).
[CrossRef]

Appl. Opt.

IEEE Trans. Circuits Syst. Video Technol.

F. Wu, S. Li, and Y.-Q. Zhang, “A framework for efficient progressive fine granularity scalable video coding,” IEEE Trans. Circuits Syst. Video Technol. 11, 332–344 (2001).
[CrossRef]

IEEE Trans. Image Process.

M. Liebling, T. Blu, and M. Unser, “Fresnelets: new multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).
[CrossRef]

IEICE Trans. Inf. Syst.

Y.-H. Seo, H.-J. Choi, J.-W. Bae, H.-C. Kang, S.-H. Lee, J.-S. Yoo, and D.-W. Kim, “A new coding technique for digital holographic video using multi-view prediction,” IEICE Trans. Inf. Syst. E90-D, 118–125 (2007).
[CrossRef]

Opt. Commun.

Y.-H. Seo, H.-J. Choi, J.-S. Yoo, and D.-W. Kim, “Digital hologram compression technique by eliminating spatial correlations based on MCTF,” Opt. Commun. 283, 4261–4270 (2010).

Opt. Eng.

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “Lossy coding technique for digital holographic signal,” Opt. Eng. 45, 065802(2006).
[CrossRef]

T. J. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43, 2233–2238 (2004).
[CrossRef]

Opt. Express

Proc. SPIE

H. Yoshikawa and K. Sasaki, “Information reduction by limited resolution for electro-holographic display,” Proc. SPIE 1914, 206–211 (1993).
[CrossRef]

H. Yoshikawa and K. Sasaki, “Image scaling for electro-holographic display,” Proc. SPIE 2176, 12–22 (1994).
[CrossRef]

H. Yoshikawa and J. Tamai, “Holographic image compression by motion picture coding,” in Proc. SPIE 2652, 2–9 (1996).
[CrossRef]

Signal Process. Image Commun.

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Y.-H. Seo, H.-J. Choi, and D.-W. Kim, “3D scanning-based compression technique for digital hologram video,” Signal Process. Image Commun. 22, 144–156 (2007).
[CrossRef]

Other

http://www.youtube.com/watch?v=WpI0PWALdLE&feature=plcp .

H. Yoshikawa, “Digital holographic signal processing,” in Proceedings of TAO First International Symposium on Three Dimensional Image Communication Technologies (TAO, 1993), paper S-4-2.

J. Reichel, H. Schwarz, and M. Wien, “Scalable Video Coding—Working Draft 1,” Doc. JVT-N020 (2005).

B. Javidi and F. Okano eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

P. Hariharan, Basics of Holography (Cambridge University, 2002).

http://developer.nvidia.com/category/zone/cuda-zone .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Structures of a digital holographic video service system using: (a) an optical system, (b) a Depth+RGB camera system, (c) an RGB camera system, and (d) 3D graphic modeling.

Fig. 2.
Fig. 2.

HRS scheme: (a) encoding and (b) decoding.

Fig. 3.
Fig. 3.

Cropping method for the various layers.

Fig. 4.
Fig. 4.

Pre-process for compression.

Fig. 5.
Fig. 5.

LSS coding scheme: (a) encoding, (b) decoding 1, and (c) decoding 2.

Fig. 6.
Fig. 6.

Example of LSS codec scheme: (a) decoding 1 and (b) decoding 2.

Fig. 7.
Fig. 7.

Images/videos used in the experiments; Rabbit’s (a) depth and (b) reconstructed image, Hyunjin’s (c) depth and (d) reconstructed image, Ballet’s (e) depth and (f) reconstructed image, Brahms’s (g) digital hologram and (h) reconstructed image.

Fig. 8.
Fig. 8.

PSNR values of reconstructed images after HRS scheme: (a) Rabbit, (b) Hyunjin, (c) Ballet, and (d) Brahms.

Fig. 9.
Fig. 9.

Results from HRS scheme for Hyunjin.

Fig. 10.
Fig. 10.

Results from reconstructing and increasing the resolution to the highest layer for Rabbit and 101 compression ratio: (a) Layer 0, (b) Layer 1, (c) Layer 2, (d) Layer 3, (e) Layer 4, (f) Layer 5, (g) Layer 6, and (h) Layer 7 (highest resolution).

Fig. 11.
Fig. 11.

Examples of optically acquired hologram Brahms for layer 7 with the compression ratio of (a) 11, (b) 201, (c) 401, (d) 601, (e) 801, and (f) 1001.

Fig. 12.
Fig. 12.

LSS coding process and the results for Rabbit.

Fig. 13.
Fig. 13.

Results from combining CGHs to form an enhanced hologram for Ballet.

Fig. 14.
Fig. 14.

Results from more detailed experiments for the relationship between the amount of information and the image quality with Hyunjin.

Fig. 15.
Fig. 15.

Reconstructed results from with and without interpolation: (a) original; after 1/4 down-sampling, (b) without interpolation “zero up-sampling,” (c) duplicating the left pixel, and (d) bi-cubic interpolation.

Fig. 16.
Fig. 16.

Results from optical reconstruction for HRS scheme (Rabbit).

Fig. 17.
Fig. 17.

Results from optical reconstruction for LSS scheme (Hyunjin).

Fig. 18.
Fig. 18.

Optical equipment.

Tables (1)

Tables Icon

Table 1. Two Parameter Sets for the Experiments

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I=|O+R|2=|O|2+|R|2+2|O||R|cos(φoφr).
Iα=jNAjcos[k(pαxαpjxj)2+(pαyαpjyj)2+zj2],
Iα=jNAjcos(RCGH)=j=1MAjcos(RCGH)+j=M+1NAjcos(RCGH),
RCGH=k(pαxαpjxj)2+(pαyαpjyj)2+zj2.
Lk+1=Blevelk+1Blevelk,
PSNR=10log10(25521mni=0m1j=0n1[I(i,j)I(i,j)]2).

Metrics