Abstract

The optical properties of solution-processable semiconducting titanium suboxide (TiOx) thin films were investigated as a function of wavelength (350–800 nm) using ellipsometric and optical reflection technique. The variation of refractive index under different thermal annealing conditions (room temperature to 900 °C) was studied. The increase in refractive index with high-temperature thermal annealing process was observed, allowing the opportunity to obtain refractive index values from 1.77 to 2.57 at a wavelength of 600 nm. The x-ray diffraction and atomic force microscopy studies indicate that the index variation is due to the TiOx phase, density, and morphology changes under thermal annealing. The TiOx thin films have applications in organic and inorganic solar cells as well as other optical and photonic devices. We show that TiOx thin films can be used as an effective antireflection layer for Si solar cells.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48, 1727–1732 (2009).
    [CrossRef]
  2. N. Nobuhiro, S. Mitsunori, M. Mitsunobu, B. Nobuyoshi, and S. Naruhito, “TiO2-SiO2 based glasses for infrared hollow waveguides,” Appl. Opt. 30, 1074–1079 (1991).
    [CrossRef]
  3. M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
    [CrossRef]
  4. B. O’Reagen and M. Gräzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
    [CrossRef]
  5. S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010).
    [CrossRef]
  6. B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Appl. Surf. Sci. 239, 165–170 (2005).
    [CrossRef]
  7. W. Kaewwiset, W. Onreabroy, and P. Limsuwan, “Effect of annealed temperatures on the morphology of TiO2 films,” Kasetsart J. Nat. Sci. 42, 340–345 (2008).
  8. M. Zaharescu, M. Crisan, and I. Musevic, “Atomic force microscopy study of TiO2 films obtained by the sol-gel method,” J. Sol-Gel Sci. Technol. 13, 769–773 (1998).
    [CrossRef]
  9. N. Ozer, H. Demiryont, and J. H. Simmons, “Optical properties of sol-gel spin-coated TiO2 films and comparison of the properties with ion-beam-sputtered films,” Appl. Opt. 30, 3661–3666 (1991).
    [CrossRef]
  10. P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998).
    [CrossRef]
  11. P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009).
    [CrossRef]
  12. Y. Yamada, H. Uyama, S. Watanabe, and H. Nozoye, “Deposition at low substrate temperatures of high-quality TiO2 films by radical beam-assisted evaporation,” Appl. Opt. 38, 6638–6641 (1999).
    [CrossRef]
  13. S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
    [CrossRef]
  14. P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004).
    [CrossRef]
  15. G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
    [CrossRef]
  16. N. Albertinetti and H. T. Minden, “Granularity in ion-beam-sputtered TiO2 films,” Appl. Opt. 35, 5620–5625 (1996).
    [CrossRef]
  17. S. Chao, W. Wang, M. Hsu, and L. Wang, “Characteristics of ion-beam-sputtered high-refractive-index TiO2-SiO2 mixed films,” J. Opt. Soc. Am. A 16, 1477–1483 (1999).
    [CrossRef]
  18. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
    [CrossRef]
  19. S. Cho, K. Lee, and A. J. Heeger, “Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an active passivation/barrier layer,” Adv. Mater. 21, 1941–1944 (2009).
    [CrossRef]
  20. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
    [CrossRef]
  21. J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
    [CrossRef]
  22. D. Mardare and P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B 68, 42–47 (1999).
    [CrossRef]
  23. M. M. Rahman, G. Yu, K. M. Krishna, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Determination of optical constants of sol-gel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy,” Appl. Opt. 37, 691–697 (1998).
    [CrossRef]
  24. V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
    [CrossRef]
  25. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
    [CrossRef]
  26. D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
    [CrossRef]
  27. M. W. Ribarsky, “Titanium dioxide (TiO2) (rutile),” in Handbook of Optical Constants, E. Palik, ed. (Academic, 1985), Vol. 1, pp. 795–804.
  28. G. Hass, “Preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum 2, 331–345(1952).
    [CrossRef]
  29. V. V. Iyengar, J. Li, and M. C. Gupta, “Solution processable TiOx thin films as anti-reflection and passivation layer for Si solar cells,” IEEE J. Photovoltaics (submitted).

2011 (1)

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

2010 (1)

S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010).
[CrossRef]

2009 (3)

P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009).
[CrossRef]

S. Cho, K. Lee, and A. J. Heeger, “Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an active passivation/barrier layer,” Adv. Mater. 21, 1941–1944 (2009).
[CrossRef]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48, 1727–1732 (2009).
[CrossRef]

2008 (1)

W. Kaewwiset, W. Onreabroy, and P. Limsuwan, “Effect of annealed temperatures on the morphology of TiO2 films,” Kasetsart J. Nat. Sci. 42, 340–345 (2008).

2007 (1)

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

2006 (1)

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

2005 (1)

B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Appl. Surf. Sci. 239, 165–170 (2005).
[CrossRef]

2004 (1)

P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004).
[CrossRef]

2003 (1)

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

2002 (1)

S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
[CrossRef]

2000 (2)

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

1999 (3)

1998 (3)

M. Zaharescu, M. Crisan, and I. Musevic, “Atomic force microscopy study of TiO2 films obtained by the sol-gel method,” J. Sol-Gel Sci. Technol. 13, 769–773 (1998).
[CrossRef]

P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998).
[CrossRef]

M. M. Rahman, G. Yu, K. M. Krishna, T. Soga, J. Watanabe, T. Jimbo, and M. Umeno, “Determination of optical constants of sol-gel-derived inhomogeneous TiO2 thin films by spectroscopic ellipsometry and transmission spectroscopy,” Appl. Opt. 37, 691–697 (1998).
[CrossRef]

1996 (1)

1994 (1)

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

1991 (3)

1986 (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

1952 (1)

G. Hass, “Preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum 2, 331–345(1952).
[CrossRef]

Abel´es, F.

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

Albertinetti, N.

Battiston, G. A.

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

Birnie, D. P.

S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010).
[CrossRef]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

Brunner, R.

Buschendorf, D.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Cattarin, S.

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

Chao, S.

Chindaudom, P.

P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009).
[CrossRef]

Cho, S.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

S. Cho, K. Lee, and A. J. Heeger, “Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an active passivation/barrier layer,” Adv. Mater. 21, 1941–1944 (2009).
[CrossRef]

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

Chrysicopoulou, P.

P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998).
[CrossRef]

Crisan, M.

M. Zaharescu, M. Crisan, and I. Musevic, “Atomic force microscopy study of TiO2 films obtained by the sol-gel method,” J. Sol-Gel Sci. Technol. 13, 769–773 (1998).
[CrossRef]

Davazoglou, D.

P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998).
[CrossRef]

Demiryont, H.

Edington, S.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

Eggert, S.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Eiamchai, P.

P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009).
[CrossRef]

Ennaoui, A.

B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Appl. Surf. Sci. 239, 165–170 (2005).
[CrossRef]

Fisher, E. R.

P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004).
[CrossRef]

Fisson, S.

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

Frigerio, J. M.

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

Gerbasi, R.

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

Gong, X.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Gösele, U.

Grammes, R.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Gräzel, M.

B. O’Reagen and M. Gräzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[CrossRef]

Gregori, A.

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

Gupta, M. C.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

V. V. Iyengar, J. Li, and M. C. Gupta, “Solution processable TiOx thin films as anti-reflection and passivation layer for Si solar cells,” IEEE J. Photovoltaics (submitted).

Hass, G.

G. Hass, “Preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum 2, 331–345(1952).
[CrossRef]

Heeger, A. J.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

S. Cho, K. Lee, and A. J. Heeger, “Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an active passivation/barrier layer,” Adv. Mater. 21, 1941–1944 (2009).
[CrossRef]

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Helgert, M.

Heyroth, F.

Hirano, T.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

Hiratani, M.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

Hones, P.

D. Mardare and P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B 68, 42–47 (1999).
[CrossRef]

Hsu, M.

Iyengar, V. V.

V. V. Iyengar, J. Li, and M. C. Gupta, “Solution processable TiOx thin films as anti-reflection and passivation layer for Si solar cells,” IEEE J. Photovoltaics (submitted).

Jimbo, T.

Kadoshima, M.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

Kaewwiset, W.

W. Kaewwiset, W. Onreabroy, and P. Limsuwan, “Effect of annealed temperatures on the morphology of TiO2 films,” Kasetsart J. Nat. Sci. 42, 340–345 (2008).

Karuppuchamy, S.

S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
[CrossRef]

Kim, J. Y.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Kim, S.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

Kim, S. H.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Kimura, S.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

Knez, M.

Kohli, S.

P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004).
[CrossRef]

Kordas, G.

P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998).
[CrossRef]

Krishna, K. M.

Lee, H. H.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Lee, K.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

S. Cho, K. Lee, and A. J. Heeger, “Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an active passivation/barrier layer,” Adv. Mater. 21, 1941–1944 (2009).
[CrossRef]

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Li, J.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

V. V. Iyengar, J. Li, and M. C. Gupta, “Solution processable TiOx thin films as anti-reflection and passivation layer for Si solar cells,” IEEE J. Photovoltaics (submitted).

Limsuwan, P.

P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009).
[CrossRef]

W. Kaewwiset, W. Onreabroy, and P. Limsuwan, “Effect of annealed temperatures on the morphology of TiO2 films,” Kasetsart J. Nat. Sci. 42, 340–345 (2008).

Lux-Steiner, M. Ch.

B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Appl. Surf. Sci. 239, 165–170 (2005).
[CrossRef]

Ma, W.

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Mardare, D.

D. Mardare and P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B 68, 42–47 (1999).
[CrossRef]

Matsui, Y.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

McCurdy, P. R.

P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004).
[CrossRef]

Mergel, D.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Minden, H. T.

Minoura, H.

S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
[CrossRef]

Mitsunobu, M.

Mitsunori, S.

Musevic, I.

M. Zaharescu, M. Crisan, and I. Musevic, “Atomic force microscopy study of TiO2 films obtained by the sol-gel method,” J. Sol-Gel Sci. Technol. 13, 769–773 (1998).
[CrossRef]

Nabatame, T.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

Naruhito, S.

Nedy, J.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

Nguyen Van, V.

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

Nobuhiro, N.

Nobuyoshi, B.

Nonomura, K.

S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
[CrossRef]

Nozoye, H.

O’Reagen, B.

B. O’Reagen and M. Gräzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[CrossRef]

Onreabroy, W.

W. Kaewwiset, W. Onreabroy, and P. Limsuwan, “Effect of annealed temperatures on the morphology of TiO2 films,” Kasetsart J. Nat. Sci. 42, 340–345 (2008).

Ozer, N.

Park, S. H.

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

Phadke, S.

S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010).
[CrossRef]

Pokaipisit, A.

P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009).
[CrossRef]

Porchia, M.

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

Rahman, M. M.

Ribarsky, M. W.

M. W. Ribarsky, “Titanium dioxide (TiO2) (rutile),” in Handbook of Optical Constants, E. Palik, ed. (Academic, 1985), Vol. 1, pp. 795–804.

Rivory, J.

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

Rizzi, G. A.

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

Samset, B.

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Sankapal, B. R.

B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Appl. Surf. Sci. 239, 165–170 (2005).
[CrossRef]

Sherwood, H.

S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010).
[CrossRef]

Shimamoto, Y.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

Simmons, J. H.

Soga, T.

Sorge, J. D.

S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010).
[CrossRef]

Sturgess, L. J.

P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004).
[CrossRef]

Sugiura, T.

S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
[CrossRef]

Szeghalmi, A.

Torii, K.

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

Trapalis, Chr.

P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998).
[CrossRef]

Umeno, M.

Uyama, H.

Vuye, G.

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

Wang, L.

Wang, W.

Wang, Y.

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

Watanabe, J.

Watanabe, S.

Yamada, Y.

Yates, J. T.

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

Yoshida, T.

S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
[CrossRef]

Yu, G.

Zaharescu, M.

M. Zaharescu, M. Crisan, and I. Musevic, “Atomic force microscopy study of TiO2 films obtained by the sol-gel method,” J. Sol-Gel Sci. Technol. 13, 769–773 (1998).
[CrossRef]

Adv. Mater. (3)

K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, “Air-stable polymer electronic devices,” Adv. Mater. 19, 2445–2449 (2007).
[CrossRef]

S. Cho, K. Lee, and A. J. Heeger, “Extended lifetime of organic field-effect transistors encapsulated with titanium sub-oxide as an active passivation/barrier layer,” Adv. Mater. 21, 1941–1944 (2009).
[CrossRef]

J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Appl. Opt. (6)

Appl. Surf. Sci. (3)

P. R. McCurdy, L. J. Sturgess, S. Kohli, and E. R. Fisher, “Investigation of the PECVD TiO2-Si(100) interface,” Appl. Surf. Sci. 233, 69–79 (2004).
[CrossRef]

M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultra-thin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci. 207, 13–19 (2003).
[CrossRef]

B. R. Sankapal, M. Ch. Lux-Steiner, and A. Ennaoui, “Synthesis and characterization of anatase-TiO2 thin films,” Appl. Surf. Sci. 239, 165–170 (2005).
[CrossRef]

Curr. Appl. Phys. (1)

P. Eiamchai, P. Chindaudom, A. Pokaipisit, and P. Limsuwan, “A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation,” Curr. Appl. Phys. 9, 707–712 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Sol-Gel Sci. Technol. (1)

M. Zaharescu, M. Crisan, and I. Musevic, “Atomic force microscopy study of TiO2 films obtained by the sol-gel method,” J. Sol-Gel Sci. Technol. 13, 769–773 (1998).
[CrossRef]

Kasetsart J. Nat. Sci. (1)

W. Kaewwiset, W. Onreabroy, and P. Limsuwan, “Effect of annealed temperatures on the morphology of TiO2 films,” Kasetsart J. Nat. Sci. 42, 340–345 (2008).

Mater. Sci. Eng. B (1)

D. Mardare and P. Hones, “Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements,” Mater. Sci. Eng. B 68, 42–47 (1999).
[CrossRef]

Nature (1)

B. O’Reagen and M. Gräzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737–740 (1991).
[CrossRef]

Phys. Rev. B (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B 34, 7018–7026 (1986).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

J. Li, S. Kim, S. Edington, J. Nedy, S. Cho, K. Lee, A. J. Heeger, M. C. Gupta, and J. T. Yates, “A study of stabilization of P3HT/PCBM organic solar cells by photochemical active TiOx layer,” Sol. Energy Mater. Sol. Cells 95, 1123–1130 (2011).
[CrossRef]

Solid State Ionics (1)

S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, “Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells,” Solid State Ionics 151, 19–27 (2002).
[CrossRef]

Thin Solid Films (5)

P. Chrysicopoulou, D. Davazoglou, Chr. Trapalis, and G. Kordas, “Optical properties of very thin <100  nm/sol-gel TiO2films,” Thin Solid Films 323, 188–193 (1998).
[CrossRef]

S. Phadke, J. D. Sorge, H. Sherwood, and D. P. Birnie, “Broad band optical characterization of sol-gel TiO2 thin film microstructure evolution with temperature,” Thin Solid Films 518, 5467–5470 (2010).
[CrossRef]

V. Nguyen Van, S. Fisson, J. M. Frigerio, J. Rivory, G. Vuye, Y. Wang, and F. Abel´es, “Growth of low and high refractive index dielectric layers as studied by in situ ellipsometry,” Thin Solid Films 253, 257–261 (1994).
[CrossRef]

G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films 371, 126–131 (2000).
[CrossRef]

D. Mergel, D. Buschendorf, S. Eggert, R. Grammes, and B. Samset, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films 371, 218–224 (2000).
[CrossRef]

Vacuum (1)

G. Hass, “Preparation, properties and optical applications of thin films of titanium dioxide,” Vacuum 2, 331–345(1952).
[CrossRef]

Other (2)

V. V. Iyengar, J. Li, and M. C. Gupta, “Solution processable TiOx thin films as anti-reflection and passivation layer for Si solar cells,” IEEE J. Photovoltaics (submitted).

M. W. Ribarsky, “Titanium dioxide (TiO2) (rutile),” in Handbook of Optical Constants, E. Palik, ed. (Academic, 1985), Vol. 1, pp. 795–804.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Three-layers model of TiOx films.

Fig. 2.
Fig. 2.

Variation of refractive index with wavelength when TiOx film is annealed at various temperatures in (a) forming gas and (b) O2 atmosphere. The variation of extinction coefficient (k) with wavelength when TiOx film is annealed at various temperatures in (c) forming gas and (d) O2 atmosphere.

Fig. 3.
Fig. 3.

XRD spectra for TiOx films annealed in (a) forming gas and (b) O2 at various temperatures of 400 °C, 500 °C, 700 °C, and 900 °C, respectively. R (110) stands for the rutile peak at 2θ=27.5°, A (101) stands for the anatase peak at 2θ=25.6°.

Fig. 4.
Fig. 4.

(a) AFM image of as-deposited film. (b) AFM image of film annealed in O2 at 900 °C for 10 min. (c) AFM image of film annealed in forming gas at 900 °C for 10 min.

Fig. 5.
Fig. 5.

Measured optical reflectance from TiOx thin film-coated Si substrate for different thickness and annealing conditions, including as-deposited TiOx film before annealing, TiOx film annealed in forming gas, and in oxygen at 400 °C. The reflectance from bare silicon and commonly used Si3N4 antireflection coating layer on Si are also shown. Si3N4 film thickness is 70 nm.

Tables (2)

Tables Icon

Table 1. Modeling Parameters for Refractive Index Simulation

Tables Icon

Table 2. Layer Thickness at Different Thermal Annealing Conditions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n=n+B(ωω0)+C(ωω0)2+Γ2,k(ω)={0,(ωωg)f(ωω0)2(ωω0)2+Γ2,(ω>ωg),whereB=fΓ(Γ2(ωωg)2),C=2Γf(ωωg).

Metrics