Abstract

We present a new semiellipsoid microlens fabrication method that controls the printing gap in the UV lithography process without thermal reflow. The UV proximity printing method can precisely control the curvature radius ratio of the semiellipsoid microlens in the fabrication process. The proposed fabrication method facilitates mass production to achieve a high-yield and high-coupling semiellipsoid microlens that is suitable to be used in commercial fiber transmission systems. A semiellipsoid microlens can be tipped on a single-mode fiber end to improve power coupling efficiency from laser diodes. The semiellipsoid microlens allows increasing the fiber spot size and numerical aperture. It is very important to control the geometric parameters in the assembly procedure to increase the optical coupling efficiency between the laser diode and single-mode fiber. Wide misalignment tolerance, low loss, and low manufacturing cost could be achieved by the proposed fabrication method. The theoretical model is first developed to predict the optical coupling efficiency for various microstructure geometries of semiellipsoid microlens and assembly parameters in this study. Then, the Taguchi method is applied to obtain the optimal geometric parameters setting. The results show that optical coupling efficiency could be significantly improved by using the optimal geometric parameters setting.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008).
    [CrossRef]
  2. H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004).
    [CrossRef]
  3. S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
    [CrossRef]
  4. L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
    [CrossRef]
  5. J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
    [CrossRef]
  6. C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010).
    [CrossRef]
  7. Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express 15, 1434–1442 (2007).
    [CrossRef]
  8. Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
    [CrossRef]
  9. R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.
  10. T. H. Lin, H. Yang, and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13, 1537–1543 (2007).
    [CrossRef]
  11. J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
    [CrossRef]
  12. K. Hoshino and I. Shimoyama, “An elastic thin-film micro-lens array with a pneumatic actuator,” Proceedings of MEMS 2001: The 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 321–324.
  13. J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).
  14. V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  16. J. Y. Hu, “Ellipsoidal microlens for laser diode to single-mode fiber coupling,” Ph.D. dissertation (National Taiwan University of Science and Technology, 2009).
  17. J. H. Sun, B. R. Hsueh, Y. C. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48, 1741–1757 (2009).
    [CrossRef]
  18. C. B. Lee, K. Hane, W. S. Kim, and S. K. Lee, “Design of retrodiffraction gratings for polarization-insensitive and polarization-sensitive characteristics by using the Taguchi method,” Appl. Opt. 47, 3246–3253 (2008).
    [CrossRef]
  19. K. M. Tsai, “Effect of injection molding process parameters on optical properties of lenses,” Appl. Opt. 49, 6149–6159 (2010).
    [CrossRef]
  20. G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality Engineering in Production Systems (McGraw-Hill, 1989).
  21. G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering (McGraw-Hill, 2000).
  22. J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004).
    [CrossRef]
  23. Y. F. William and M. C. Clyde, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development (Addison-Wesley, 1998).
  24. M. He, X. Yuan, J. Bu, W. C. Cheong, and K. J. Moh, “Reflowed solgel spherical microlens for high-efficiency optical coupling between a laser diode and a single-mode fiber,” Appl. Opt. 44, 1469–1473 (2005).
    [CrossRef]

2010 (2)

C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010).
[CrossRef]

K. M. Tsai, “Effect of injection molding process parameters on optical properties of lenses,” Appl. Opt. 49, 6149–6159 (2010).
[CrossRef]

2009 (2)

J. H. Sun, B. R. Hsueh, Y. C. Fang, J. MacDonald, and C. C. Hu, “Optical design and multiobjective optimization of miniature zoom optics with liquid lens element,” Appl. Opt. 48, 1741–1757 (2009).
[CrossRef]

S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
[CrossRef]

2008 (4)

T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008).
[CrossRef]

Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
[CrossRef]

C. B. Lee, K. Hane, W. S. Kim, and S. K. Lee, “Design of retrodiffraction gratings for polarization-insensitive and polarization-sensitive characteristics by using the Taguchi method,” Appl. Opt. 47, 3246–3253 (2008).
[CrossRef]

J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
[CrossRef]

2007 (2)

Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express 15, 1434–1442 (2007).
[CrossRef]

T. H. Lin, H. Yang, and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13, 1537–1543 (2007).
[CrossRef]

2005 (1)

2004 (3)

J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004).
[CrossRef]

1991 (1)

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

1990 (1)

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
[CrossRef]

Andreadakis, N. C.

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

Binh-Khiem, N.

R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.

Bour, D. P.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
[CrossRef]

Bu, J.

Cao, C. L.

Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
[CrossRef]

Chao, C. H.

S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
[CrossRef]

Chao, C. K.

C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010).
[CrossRef]

J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
[CrossRef]

T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008).
[CrossRef]

T. H. Lin, H. Yang, and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13, 1537–1543 (2007).
[CrossRef]

H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004).
[CrossRef]

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Chen, X. X.

J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004).
[CrossRef]

Cheng, W. H.

Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
[CrossRef]

Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express 15, 1434–1442 (2007).
[CrossRef]

Cheong, W. C.

Chowdhury, S.

G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering (McGraw-Hill, 2000).

Clyde, M. C.

Y. F. William and M. C. Clyde, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development (Addison-Wesley, 1998).

Curtis, L.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
[CrossRef]

Deal, M. D.

J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).

Elsayed, E. A.

G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality Engineering in Production Systems (McGraw-Hill, 1989).

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Fang, Y. C.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

Griffin, P. B.

J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).

Hane, K.

He, M.

Hoshino, K.

K. Hoshino and I. Shimoyama, “An elastic thin-film micro-lens array with a pneumatic actuator,” Proceedings of MEMS 2001: The 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 321–324.

Hsiang, T. C.

G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality Engineering in Production Systems (McGraw-Hill, 1989).

Hsueh, B. R.

Hu, C. C.

Hu, J. Y.

C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010).
[CrossRef]

J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
[CrossRef]

J. Y. Hu, “Ellipsoidal microlens for laser diode to single-mode fiber coupling,” Ph.D. dissertation (National Taiwan University of Science and Technology, 2009).

Huang, J. C.

S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
[CrossRef]

Hung, S. Y.

C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010).
[CrossRef]

J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
[CrossRef]

Hung, T. R.

J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004).
[CrossRef]

Iwase, E.

R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.

Kim, W. S.

Krchnavek, R. R.

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

Lalk, G. R.

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

Lee, C. B.

Lee, S. K.

Lin, C. C.

Lin, C. P.

J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
[CrossRef]

H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004).
[CrossRef]

Lin, T. H.

T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008).
[CrossRef]

T. H. Lin, H. Yang, and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13, 1537–1543 (2007).
[CrossRef]

Liu, K. H.

S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
[CrossRef]

Liu, Y. D.

Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
[CrossRef]

Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express 15, 1434–1442 (2007).
[CrossRef]

Lu, Y. K.

Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
[CrossRef]

Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express 15, 1434–1442 (2007).
[CrossRef]

MacDonald, J.

Mann, J. W.

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

Matsumoto, K.

R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.

Miyamoto, R.

R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.

Moh, K. J.

Pan, C. T.

S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
[CrossRef]

Plummer, J. D.

J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).

Reith, L. A.

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

Shah, V. S.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
[CrossRef]

Shen, S. C.

S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
[CrossRef]

H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004).
[CrossRef]

Shimoyama, I.

K. Hoshino and I. Shimoyama, “An elastic thin-film micro-lens array with a pneumatic actuator,” Proceedings of MEMS 2001: The 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 321–324.

R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.

Shyu, R. F.

T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008).
[CrossRef]

Sun, J. H.

Taguchi, G.

G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering (McGraw-Hill, 2000).

G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality Engineering in Production Systems (McGraw-Hill, 1989).

Taguchi, S.

G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering (McGraw-Hill, 2000).

Thibault, F.

J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004).
[CrossRef]

Tsai, K. M.

Tsai, Y. C.

Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
[CrossRef]

Y. K. Lu, Y. C. Tsai, Y. D. Liu, S. M. Yeh, C. C. Lin, and W. H. Cheng, “Asymmetric elliptic-cone-shaped microlens for efficient coupling to high-power laser diodes,” Opt. Express 15, 1434–1442 (2007).
[CrossRef]

Varahramyan, K.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Vodhanel, R. S.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
[CrossRef]

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

William, Y. F.

Y. F. William and M. C. Clyde, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development (Addison-Wesley, 1998).

Yang, H.

C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010).
[CrossRef]

J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
[CrossRef]

T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008).
[CrossRef]

T. H. Lin, H. Yang, and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13, 1537–1543 (2007).
[CrossRef]

H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004).
[CrossRef]

Yeh, S. M.

Young, W. C.

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
[CrossRef]

Yu, J. C.

J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004).
[CrossRef]

Yuan, X.

Zah, C. E.

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

Appl. Opt. (4)

J. Intell. Manuf. (1)

J. C. Yu, X. X. Chen, T. R. Hung, and F. Thibault, “Optimization of extrusion blow molding processes using soft computing and Taguchi’s method,” J. Intell. Manuf. 15, 625–634 (2004).
[CrossRef]

J. Lightwave Technol. (2)

L. A. Reith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis, and C. E. Zah, “Relaxed-tolerance optoelectronic device packaging,” J. Lightwave Technol. 9, 477–484 (1991).
[CrossRef]

V. S. Shah, L. Curtis, R. S. Vodhanel, D. P. Bour, and W. C. Young, “Efficient power coupling from a 980 nm, broad-area laser to a single-mode finer using a wedge-shaped fiber endface,” J. Lightwave Technol. 8, 1313–1318 (1990).
[CrossRef]

J. Mech. (1)

C. K. Chao, J. Y. Hu, S. Y. Hung, and H. Yang, “Theoretical prediction of fiber coupling for ellipsoidal microlens,” J. Mech. 26, 29–36 (2010).
[CrossRef]

J. Micromech. Microeng. (4)

H. Yang, C. K. Chao, C. P. Lin, and S. C. Shen, “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277–282 (2004).
[CrossRef]

S. C. Shen, C. T. Pan, K. H. Liu, C. H. Chao, and J. C. Huang, “Fabrication of an eyeball-like spherical micro-lens array using extrusion for optical fiber coupling,” J. Micromech. Microeng. 19, 125017 (2009).
[CrossRef]

Y. C. Tsai, Y. D. Liu, C. L. Cao, Y. K. Lu, and W. H. Cheng, “A new scheme of fiber end-face fabrication employing a variable torque technique,” J. Micromech. Microeng. 18, 055003 (2008).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, “Variable focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Microsyst. Technol. (2)

T. H. Lin, H. Yang, and C. K. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13, 1537–1543 (2007).
[CrossRef]

T. H. Lin, H. Yang, R. F. Shyu, and C. K. Chao, “New horizontal frustum optical waveguide fabrication using UV proximity printing,” Microsyst. Technol. 14, 1035–1040 (2008).
[CrossRef]

Opt. Express (1)

Sens. Actuators A (1)

J. Y. Hu, C. P. Lin, S. Y. Hung, H. Yang, and C. K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Actuators A 147, 93–98 (2008).
[CrossRef]

Other (8)

G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality Engineering in Production Systems (McGraw-Hill, 1989).

G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering (McGraw-Hill, 2000).

Y. F. William and M. C. Clyde, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development (Addison-Wesley, 1998).

J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).

J. Y. Hu, “Ellipsoidal microlens for laser diode to single-mode fiber coupling,” Ph.D. dissertation (National Taiwan University of Science and Technology, 2009).

K. Hoshino and I. Shimoyama, “An elastic thin-film micro-lens array with a pneumatic actuator,” Proceedings of MEMS 2001: The 14th IEEE International Conference on Micro Electro Mechanical Systems (IEEE, 2001), pp. 321–324.

J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, 2000).

R. Miyamoto, N. Binh-Khiem, E. Iwase, K. Matsumoto, and I. Shimoyama, “Ellipsoidal micro lens fabricated by depositing parylene directly on liquid,” in Proceedings of Transducers’09: International Solid-State Sensors, Actuators and Microsystems Conference (IEEE, 2009), pp. 1365–1368.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

(a) Schematic diagram. (b) Geometric parameters of semiellipsoid microlens fabrication using UV proximity printing method.

Fig. 2.
Fig. 2.

Light intensity distribution in photoresist exposed using UV proximity printing method with a 300 μm printing gap between the photoresist and mask.

Fig. 3.
Fig. 3.

Relationship between the diameter of concave photoresist mold and printing gap at various diameters of the round pattern on the mask.

Fig. 4.
Fig. 4.

Relationship between the curvature radius of the concave photoresist mold and the printing gap at various diameters of the round pattern on the mask.

Fig. 5.
Fig. 5.

Geometry schematic diagram for the semiellipsoid microlens on the tip of the fiber in this study.

Fig. 6.
Fig. 6.

Coordinate definitions for general configuration for LD to optical fiber with semiellipsoid microlens.

Fig. 7.
Fig. 7.

Effects plots of optical coupling efficiency on control factors for the semiellipsoid microlens.

Fig. 8.
Fig. 8.

Illustration of the pattern design on the mask for semiellipsoid microlens fabrication.

Fig. 9.
Fig. 9.

3D surface profile of the master mold for the semiellipsoid microlens.

Fig. 10.
Fig. 10.

(a) Cross-sectional profile of major axis. (b) Minor axis for semiellipsoid microlens.

Fig. 11.
Fig. 11.

SEM micrograph of PDMS semiellipsoid microlens array fabricated using the optimal manufacturing parameters.

Fig. 12.
Fig. 12.

Cross-sectional profile of (a) major axis and (b) minor axis for the PDMS semiellipsoid microlens array fabricated using the optimal manufacturing parameters.

Tables (3)

Tables Icon

Table 1. Material Physical Properties and Geometric Parameters of Simulation Process for Optical Coupling Efficiency

Tables Icon

Table 2. Control Factors and Levels for the Parameter Optimization Experiment

Tables Icon

Table 3. Optical Coupling Efficiency of the Simulation Results for the L18 OA

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Rc=h2+D242h,
D=d+k·gap,
ULD(ξ,η)=exp{[(ξ/ωlξ)2+(η/ωlη)2]},
Ulens(x,y)=eikziλzULD(ξ,η)×exp{ik2z[(xξ)2+(yη)2]}dξdη,
tlens(x,y)=exp[ik(n1)Δ(x,y,Rx,Ry)],
Δ(x,y,Rx,Ry)=(x2Rx+Rx2x2+y2Ry+Ry2y2),
Ut(x,y)=Ulens(x,y)·tlens(x,y,Rx,Ry).
Uimage(u,v)=eiktiλtUt(x,y)×exp{ik2t[(ux)2+(vy)2]}dxdy.
C.E.=|Ufiber(u,v)·Uimage*(u,v)dudv|2Ufiber(u,v)Ufiber*(u,v)dudv·Uimage(u,v)·Uimage*(u,v)dudv,
Ufiber(u,v)=exp[(u2+v2)/ωf2],

Metrics