Abstract

Étendue limits angular acceptance of high-concentration photovoltaic systems and imposes precise two-axis mechanical tracking. We show how a planar micro-optic solar concentrator incorporating a waveguide cladding with a nonlinear optical response to sunlight can reduce mechanical tracking requirements. Optical system designs quantify the required response: a large, slow, and localized increase in index of refraction. We describe one candidate materials system: a suspension of high-index particles in a low-index fluid combined with a localized space-charge field to increase particle density and average index. Preliminary experiments demonstrate an index change of aqueous polystyrene nanoparticles in response to a low voltage signal and imply larger responses with optimized nanofluidic materials.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kurtz, “Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry,” (NREL, 2010).
  2. H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).
  3. J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
    [CrossRef]
  4. W. T. Welford and R. Winston, The Optics of Non-imaging Concentrators: Light and Solar Energy (Academic, 1978).
  5. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300(1976).
    [CrossRef]
  6. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
    [CrossRef]
  7. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
    [CrossRef]
  8. J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 137–144 (2010).
    [CrossRef]
  9. J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
    [CrossRef]
  10. C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759(2006).
  11. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
    [CrossRef]
  12. B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference (Optical Society of America, 2010).
  13. J. P. Morgan, “Light-guide solar panel and method of fabrication thereof,” Morgan Solar, Inc. World Intellectual Property Organization, WO 2008/131561, 11June2008.
  14. S. Ghosh and D. S. Schultz, “Solar energy concentrator,” Banyan Energy, Inc., U.S. Patent 7,672,549B2 (2March2010).
  15. J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010).
    [CrossRef]
  16. F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19, A207–A218 (2011).
    [CrossRef]
  17. P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston (29 November–3 December2010).
  18. A. Rabl, Active Solar Collectors and Their Applications(Oxford University, 1985).
  19. A. Ashkin, J. M. Dziedzic, and P. W. Smith, “Continuous-wave self-focusing and self-trapping of light in artificial Kerr media,” Opt. Lett. 7, 276–278 (1982).
    [CrossRef]
  20. V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
    [CrossRef]
  21. R. Gordon and J. T. Blakely, “Particle-optical self-trapping,” Phys. Rev. A 75, 8–11 (2007).
    [CrossRef]
  22. M. Kuzyk, Polymer Fiber Optics (CRC/Taylor & Francis, 2007).
  23. W. M. Lee, R. El-Ganainy, D. N. Christodoulides, K. Dholakia, and E. M. Wright, “Nonlinear optical response of colloidal suspensions,” Opt. Express 17, 10277–10289 (2009).
    [CrossRef]
  24. H. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
    [CrossRef]
  25. T. Jones, Electromechanics of Particles (Cambridge University, 1995).
  26. D. Chen, H. Du, and C. Y. Tay, “Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields,” Nanoscale Res. Lett. 5, 55–60 (2010).
    [CrossRef]
  27. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
    [CrossRef]
  28. S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab Chip 8, 1879–1882 (2008).
    [CrossRef]
  29. J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
    [CrossRef]
  30. R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).
  31. R. A. Norwood, Department of Optical Sciences, University of Arizona, (personal communication, 2010).

2011 (4)

J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[CrossRef]

R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).

F. Duerr, Y. Meuret, and H. Thienpont, “Tracking integration in concentrating photovoltaics using laterally moving optics,” Opt. Express 19, A207–A218 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

2010 (4)

J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010).
[CrossRef]

D. Chen, H. Du, and C. Y. Tay, “Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields,” Nanoscale Res. Lett. 5, 55–60 (2010).
[CrossRef]

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 137–144 (2010).
[CrossRef]

2009 (1)

2008 (4)

S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab Chip 8, 1879–1882 (2008).
[CrossRef]

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
[CrossRef]

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef]

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

2007 (1)

R. Gordon and J. T. Blakely, “Particle-optical self-trapping,” Phys. Rev. A 75, 8–11 (2007).
[CrossRef]

2006 (1)

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759(2006).

2005 (2)

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[CrossRef]

1982 (1)

1976 (1)

1951 (1)

H. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
[CrossRef]

Ahn, S. H.

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

Ashkin, A.

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef]

Biegala, T.

J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[CrossRef]

Blakely, J. T.

R. Gordon and J. T. Blakely, “Particle-optical self-trapping,” Phys. Rev. A 75, 8–11 (2007).
[CrossRef]

Carmody, M.

J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[CrossRef]

Chang, C. Y.

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759(2006).

Chen, D.

D. Chen, H. Du, and C. Y. Tay, “Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields,” Nanoscale Res. Lett. 5, 55–60 (2010).
[CrossRef]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[CrossRef]

Chizhov, S. A.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Christodoulides, D. N.

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef]

Dholakia, K.

Du, H.

D. Chen, H. Du, and C. Y. Tay, “Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields,” Nanoscale Res. Lett. 5, 55–60 (2010).
[CrossRef]

Duerr, F.

Dziedzic, J. M.

El-Ganainy, R.

Fedorov, S. V.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Ford, J. E.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 137–144 (2010).
[CrossRef]

J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010).
[CrossRef]

Gangopadhyay, P.

R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).

Garland, J. W.

J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[CrossRef]

Ghosh, S.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
[CrossRef]

S. Ghosh and D. S. Schultz, “Solar energy concentrator,” Banyan Energy, Inc., U.S. Patent 7,672,549B2 (2March2010).

Gilmore, C.

J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[CrossRef]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef]

Gordon, R.

R. Gordon and J. T. Blakely, “Particle-optical self-trapping,” Phys. Rev. A 75, 8–11 (2007).
[CrossRef]

Guo, L. J.

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

Hallas, J. M.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010).
[CrossRef]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef]

Himmelhuber, R.

R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).

Hsu, H.-Y.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
[CrossRef]

Inman, R. H.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
[CrossRef]

Jamshidi, A.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
[CrossRef]

Jones, T.

T. Jones, Electromechanics of Particles (Cambridge University, 1995).

Kane, V.

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

Karp, J. H.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 137–144 (2010).
[CrossRef]

Keyes, B.

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

Kumar, A.

S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab Chip 8, 1879–1882 (2008).
[CrossRef]

Kurtz, S.

S. Kurtz, “Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry,” (NREL, 2010).

Kuzyk, M.

M. Kuzyk, Polymer Fiber Optics (CRC/Taylor & Francis, 2007).

Lambe, J.

Lee, W. M.

Loy, D. A.

R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef]

Meuret, Y.

Mitchell, R.

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

Moore, D. T.

B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference (Optical Society of America, 2010).

Morgan, J. P.

J. P. Morgan, “Light-guide solar panel and method of fabrication thereof,” Morgan Solar, Inc. World Intellectual Property Organization, WO 2008/131561, 11June2008.

Norwood, R. A.

R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).

R. A. Norwood, Department of Optical Sciences, University of Arizona, (personal communication, 2010).

Ohta, A. T.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[CrossRef]

Peyghambarian, N.

R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).

Pohl, H.

H. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
[CrossRef]

Rabl, A.

A. Rabl, Active Solar Collectors and Their Applications(Oxford University, 1985).

Rozanov, N. N.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Sabirov, R. L.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Schmaelzle, P. H.

P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston (29 November–3 December2010).

Schmidt, G. R.

B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference (Optical Society of America, 2010).

Schultz, D. S.

S. Ghosh and D. S. Schultz, “Solar energy concentrator,” Banyan Energy, Inc., U.S. Patent 7,672,549B2 (2March2010).

Semenov, V. E.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Shcherbatyuk, G. V.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
[CrossRef]

Sheh, J. L.

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759(2006).

Sivananthan, S.

J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[CrossRef]

Smirnov, V. A.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Smith, P. W.

Starchikova, T. V.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Symko-Davies, M.

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

Tay, C. Y.

D. Chen, H. Du, and C. Y. Tay, “Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields,” Nanoscale Res. Lett. 5, 55–60 (2010).
[CrossRef]

Thienpont, H.

Tremblay, E. J.

J. H. Karp, E. J. Tremblay, J. M. Hallas, and J. E. Ford, “Orthogonal and secondary concentration in planar micro-optic solar collectors,” Opt. Express 19, A673–A685 (2011).
[CrossRef]

J. H. Karp, E. J. Tremblay, and J. E. Ford, “Planar micro-optic solar concentrator,” Opt. Express 18, 137–144 (2010).
[CrossRef]

J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010).
[CrossRef]

Ullal, H.

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

Unger, B. L.

B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference (Optical Society of America, 2010).

Valley, J. K.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
[CrossRef]

VanSant, K.

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

von Roedern, B.

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

Vysotina, N. V.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Wang, C.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
[CrossRef]

Weber, W. H.

Welford, W. T.

W. T. Welford and R. Winston, The Optics of Non-imaging Concentrators: Light and Solar Energy (Academic, 1978).

Wereley, S. T.

S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab Chip 8, 1879–1882 (2008).
[CrossRef]

Whiting, G. L.

P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston (29 November–3 December2010).

Williams, S. J.

S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab Chip 8, 1879–1882 (2008).
[CrossRef]

Winston, R.

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
[CrossRef]

W. T. Welford and R. Winston, The Optics of Non-imaging Concentrators: Light and Solar Energy (Academic, 1978).

Wright, E. M.

Wu, M. C.

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
[CrossRef]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[CrossRef]

Yang, S. Y.

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759(2006).

Yashin, V. E.

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Adv. Mater. (1)

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett. 96, 191901 (2010).
[CrossRef]

J. Appl. Phys. (2)

J. W. Garland, T. Biegala, M. Carmody, C. Gilmore, and S. Sivananthan, “Next-generation multijunction solar cells: The promise of II–VI materials,” J. Appl. Phys. 109, 102423 (2011).
[CrossRef]

H. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22, 869–871 (1951).
[CrossRef]

J. Microelectromech. Syst. (1)

J. K. Valley, A. Jamshidi, A. T. Ohta, H.-Y. Hsu, and M. C. Wu, “Operational regimes and physics present in optoelectronic tweezers,” J. Microelectromech. Syst. 17, 342–350(2008).
[CrossRef]

Lab Chip (1)

S. J. Williams, A. Kumar, and S. T. Wereley, “Electrokinetic patterning of colloidal particles with optical landscapes,” Lab Chip 8, 1879–1882 (2008).
[CrossRef]

Microsyst. Technol. (1)

C. Y. Chang, S. Y. Yang, and J. L. Sheh, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates,” Microsyst. Technol. 12, 754–759(2006).

Nanoscale Res. Lett. (1)

D. Chen, H. Du, and C. Y. Tay, “Rapid concentration of nanoparticles with DC dielectrophoresis in focused electric fields,” Nanoscale Res. Lett. 5, 55–60 (2010).
[CrossRef]

Nature (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436, 370–372 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mat. Express (1)

R. Himmelhuber, P. Gangopadhyay, R. A. Norwood, D. A. Loy, and N. Peyghambarian, “Titanium oxide sol-gel films with tunable refractive index,” Opt. Mat. Express 1, 252–258 (2011).

Opt. Spectrosc. (1)

V. E. Yashin, S. A. Chizhov, R. L. Sabirov, T. V. Starchikova, N. V. Vysotina, N. N. Rozanov, V. E. Semenov, V. A. Smirnov, and S. V. Fedorov, “Formation of soliton-like light beams in an aqueous suspension of polystyrene particles,” Opt. Spectrosc. 98, 466–469 (2005).
[CrossRef]

Phys. Rev. A (1)

R. Gordon and J. T. Blakely, “Particle-optical self-trapping,” Phys. Rev. A 75, 8–11 (2007).
[CrossRef]

Proc. SPIE (1)

J. M. Hallas, J. H. Karp, E. J. Tremblay, and J. E. Ford, “Lateral translation micro-tracking of planar micro-optic solar concentrator,” Proc. SPIE 7769, 776904 (2010).
[CrossRef]

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321, 226–228 (2008).
[CrossRef]

Other (11)

W. T. Welford and R. Winston, The Optics of Non-imaging Concentrators: Light and Solar Energy (Academic, 1978).

S. Kurtz, “Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry,” (NREL, 2010).

H. Ullal, R. Mitchell, B. Keyes, K. VanSant, B. von Roedern, M. Symko-Davies, and V. Kane, “Progress of the photovoltaic technology incubator project towards an enhanced U. S. manufacturing base,” presented at the 37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle (19–24June2011).

M. Kuzyk, Polymer Fiber Optics (CRC/Taylor & Francis, 2007).

T. Jones, Electromechanics of Particles (Cambridge University, 1995).

B. L. Unger, G. R. Schmidt, and D. T. Moore, “Dimpled planar lightguide solar concentrators,” in OSA International Optical Design Conference (Optical Society of America, 2010).

J. P. Morgan, “Light-guide solar panel and method of fabrication thereof,” Morgan Solar, Inc. World Intellectual Property Organization, WO 2008/131561, 11June2008.

S. Ghosh and D. S. Schultz, “Solar energy concentrator,” Banyan Energy, Inc., U.S. Patent 7,672,549B2 (2March2010).

R. A. Norwood, Department of Optical Sciences, University of Arizona, (personal communication, 2010).

P. H. Schmaelzle and G. L. Whiting, “Lower critical solution temperature (LCST) polymers as a self adaptive alternative to mechanical tracking for solar energy harvesting devices,” presented at the MRS Fall Meeting, Boston (29 November–3 December2010).

A. Rabl, Active Solar Collectors and Their Applications(Oxford University, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Passive planar micro-optic solar concentrator, showing how normally incident light (a) is coupled into the waveguide by reflection from small facets, while angled light (b) is transmitted through the system and lost. The coupling features are shown in inserts for both the aligned and misaligned systems. A micro-optic solar concentrator can be conventionally aligned by simply tilting the overall structure to restore normal illumination (c), but can also be aligned without bulk mechanical motion via “microtracking” (d) using a small lateral motion of the lenslet relative to the waveguide and coupling features.

Fig. 2.
Fig. 2.

“Reactive-tracking” where the cladding material creates or reveals the coupling features in response to moving focused sunlight.

Fig. 3.
Fig. 3.

Optical coupling of light reflected from a 120° angled injection facet as a function of external incidence angle (including surface refraction, but not lens effects) for an F2 (n=1.62) waveguide with an air cladding. The vertical-horizontal coupling asymmetry seen in the lower graph results from light reflecting from the adjacent facet and emitting from the entrance aperture.

Fig. 4.
Fig. 4.

(a) Acrylic singlet lenslet system and (b) acrylic and polycarbonate doublet system with reactive material layer implemented before the coupling facets.

Fig. 5.
Fig. 5.

(a) Modeled overall optical system efficiency as a function of geometric concentration ratio for both doublet and singlet lens systems. The model used a 1.25 bulk fluid index and 1.6 index at the focal spot. (b) Modeled optical system efficiency as a function of localized index change for the doublet lens system with 128× geometric concentration (the case indicated by the circled point in the graph above).

Fig. 6.
Fig. 6.

Incident peak sunlight intensity in W/m2 shown over (a) three key dates and (b) the course of a year relative to a fixed due south flat panel solar collector tilted at latitude in San Diego, California. The intensity roll-off shown is calculated including both air-mass path absorption and cos(θ) loss from the constant aperture orientation. The same data is shown for a 1-axis mechanically tracked panel tilted at latitude in (c) and (d).

Fig. 7.
Fig. 7.

Modeled optical efficiency as a function of input angle for 128× geometric planar solar concentrators with (a) the nonreactive prototype, (b) a reactive singlet lens design, and (c) a reactive doublet lens design. The reactive designs show a substantial increase in angular acceptance over the passive design, which has the low acceptance characteristic of CPV systems.

Fig. 8.
Fig. 8.

Optical trapping configuration: the focused sunlight traps high-index particles, locally increasing the average index of refraction of the colloid.

Fig. 9.
Fig. 9.

Modeling of maximum index change as a function of particle radius for a 1 mm paraxial lens focusing solar spectrum light to a 4.5 um spot, assuming titanium dioxide suspended in perfluorotriamylamine solution, as described in Section 4.

Fig. 10.
Fig. 10.

Optically induced DEP trapping: the focused sunlight induces a local change in the electric field through an externally biased photoconductor (a) or an organic photovoltaic (b), pulling in high-index particles and locally increasing the index of refraction.

Fig. 11.
Fig. 11.

Patterned ITO electrodes (a) are used in the system (b) to see the effect of a nonuniform electric field on a colloid.

Fig. 12.
Fig. 12.

Interferograms before (a) and after (b) 60 seconds of 60 Hz 2 volt rms square wave. The shift in the fringe pattern indicates a change in the index of refraction.

Fig. 13.
Fig. 13.

Number of fringe shifts measured and change in index of refraction calculated for varying power 60 Hz square wave.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Cmax=(1sinθ)2.
Ftrap=2πa3c(m21m2+2)I.
j=DC+νFC
C=C0exp(II0),I0=ckT2πa3m2+2m21.
Cε2εε2+2ε+(1C)ε1εε1+2ε=0.
FDEP=2πεma3KE02,K=εpεmεp+εm.

Metrics