Abstract

We present a compact infrared cryogenic multichannel camera with a wide field of view equal to 120°. By merging the optics with the detector, the concept is compatible with both cryogenic constraints and wafer-level fabrication. The design strategy of such a camera is described, as well as its fabrication and integration process. Its characterization has been carried out in terms of the modulation transfer function and the noise equivalent temperature difference (NETD). The optical system is limited by the diffraction. By cooling the optics, we achieve a very low NETD equal to 15 mK compared with traditional infrared cameras. A postprocessing algorithm that aims at reconstructing a well-sampled image from the set of undersampled raw subimages produced by the camera is proposed and validated on experimental images.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989).
    [CrossRef]
  2. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
    [CrossRef]
  3. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  4. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310 (2004).
    [CrossRef]
  5. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, and A. Tünnermann, “Microoptical telescope compound eye,” Opt. Express 13, 889–903 (2005).
    [CrossRef]
  6. J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
    [CrossRef]
  7. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express 17, 15747–15759 (2009).
    [CrossRef]
  8. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
    [CrossRef]
  9. A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).
  10. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
    [CrossRef]
  11. J. Meyer, A. Brückner, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Optical cluster eye fabricated on wafer-level,” Opt. Express 19, 17506–17519 (2011).
    [CrossRef]
  12. L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).
  13. L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).
  14. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008).
    [CrossRef]
  15. A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115–2126 (2009).
    [CrossRef]
  16. A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
    [CrossRef]
  17. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719–1727 (2004).
    [CrossRef]
  18. K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006).
    [CrossRef]
  19. K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008).
    [CrossRef]
  20. A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007).
    [CrossRef]
  21. J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt. 45, 1203–1214 (2006).
    [CrossRef]
  22. G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).
  23. F. de la Barrière, G. Druart, N. Guérineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011).
    [CrossRef]
  24. F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
    [CrossRef]
  25. R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).
  26. http://www.suss-microoptics.com .
  27. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 444.
  28. M. J. Kidger, Fundamental Optical Design (SPIE, 2002).
  29. P. Refregier, “Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency,” Opt. Lett. 16, 829–831 (1991).
    [CrossRef]
  30. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006).
    [CrossRef]
  31. M. W. Haney, “Comments on “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 50, 1584–1586 (2011).
    [CrossRef]
  32. D. J. Brady, “Reply to “Comments on multiple aperture cameras,” Appl. Opt. 50, 1587–1592 (2011).
    [CrossRef]

2011

2010

F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
[CrossRef]

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
[CrossRef]

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).

2009

2008

2007

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

A. V. Kanaev, J. R. Ackerman, E. F. Fleet, and D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32, 2855–2857 (2007).
[CrossRef]

2006

2005

2004

2003

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

2001

1991

1989

1977

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
[CrossRef]

Ackerman, J. R.

Brady, D.

Brady, D. J.

Bräuer, A.

Brückner, A.

Carriere, J.

Chen, C.

Choi, K.

Dannberg, P.

de la Barrière, F.

Deschamps, J.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
[CrossRef]

Dillon, T.

Druart, G.

Duparré, J.

Eisner, M.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Fendler, M.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
[CrossRef]

Fleet, E. F.

Gibbons, R.

Gläbe, R.

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 444.

Guérineau, N.

Haïdar, R.

Handerek, V. A.

L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

Haney, M. W.

Howe, J. D.

Ichioka, Y.

Ishida, K.

Kanaev, A. V.

Kidger, M. J.

M. J. Kidger, Fundamental Optical Design (SPIE, 2002).

Kitamura, Y.

Kondou, N.

Kumagai, T.

Laycock, L. C.

L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

Leitel, R.

Lhermet, N.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Lohmann, A. W.

Magli, S.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Masaki, Y.

Matthes, A.

Meyer, J.

Miyamoto, M.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Moullec, J.-B.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Nitta, K.

Papoulis, A.

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
[CrossRef]

Pitsianis, N.

Portnoy, A.

Prather, D.

Primot, J.

Pshenay-Severin, E.

Refregier, P.

Reibel, Y.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Reichenbach, S. E.

Riemer, O.

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

Rommeluére, S.

Rullière, J.

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Schreiber, P.

Schulz, T.

Schulz, T. J.

Scribner, D. A.

Shankar, M.

Shi, J.

Shogenji, R.

Silver, A.

Stollberg, K.

Sun, X.

Taboury, J.

Tanida, J.

Te Kolste, R.

Thétas, S.

Tünnermann, A.

Völkel, R.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Willett, R.

Wippermann, F.

A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).

Yamada, K.

Appl. Opt.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43, 1719–1727 (2004).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Artificial apposition compound eye fabricated by micro-optics technology,” Appl. Opt. 43, 4303–4310 (2004).
[CrossRef]

J. Duparré, P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

J. Shi, S. E. Reichenbach, and J. D. Howe, “Small-kernel superresolution methods for microscanning imaging systems,” Appl. Opt. 45, 1203–1214 (2006).
[CrossRef]

K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida, “Image reconstruction for thin observation module by bound optics by using the iterative backprojection method,” Appl. Opt. 45, 2893–2900 (2006).
[CrossRef]

M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45, 2901–2910 (2006).
[CrossRef]

M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, and D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47, B1–B10 (2008).
[CrossRef]

K. Choi and T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47, B104–B116 (2008).
[CrossRef]

A. Portnoy, N. Pitsianis, X. Sun, D. Brady, R. Gibbons, A. Silver, R. Te Kolste, C. Chen, T. Dillon, and D. Prather, “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 48, 2115–2126 (2009).
[CrossRef]

G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluére, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by Xenos Peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
[CrossRef]

A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28, 4996–4998 (1989).
[CrossRef]

F. de la Barrière, G. Druart, N. Guérineau, J. Taboury, J. Primot, and J. Deschamps, “Modulation transfer function measurement of a multichannel optical system,” Appl. Opt. 49, 2879–2890 (2010).
[CrossRef]

F. de la Barrière, G. Druart, N. Guérineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011).
[CrossRef]

M. W. Haney, “Comments on “Design and characterization of thin multiple aperture infrared cameras,” Appl. Opt. 50, 1584–1586 (2011).
[CrossRef]

D. J. Brady, “Reply to “Comments on multiple aperture cameras,” Appl. Opt. 50, 1587–1592 (2011).
[CrossRef]

IEEE Trans. Circuit Syst.

A. Papoulis, “Generalized sampling expansion,” IEEE Trans. Circuit Syst. 24, 652–654 (1977).
[CrossRef]

Microelectron. Eng.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

A. Brückner, J. Duparré, F. Wippermann, R. Leitel, P. Dannberg, and A. Bräuer, “Ultra-compact close-up microoptical imaging system,” Proc. SPIE 7786, 77860A-1–77860A-8 (2010).

L. C. Laycock and V. A. Handerek, “Multi-aperture imaging device for airborne platforms,” Proc. SPIE 6737, 673709-1–673709-11 (2007).

L. C. Laycock and V. A. Handerek, “Miniature imaging devices for airborne platforms,” Proc. SPIE 7113, 71130M-1–71130M-9 (2008).

R. Gläbe and O. Riemer, “Diamond machining of micro-optical components and structures,” Proc. SPIE 7716, 771602-1–771602-10 (2010).

G. Druart, F. de la Barrière, N. Guérineau, J. Deschamps, M. Fendler, N. Lhermet, J. Rullière, S. Magli, Y. Reibel, and J.-B. Moullec, “Towards infrared DDCA with an imaging function,” Proc. SPIE 8012, 801228-1–801228-11 (2011).

Other

http://www.suss-microoptics.com .

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts and Company, 2005), p. 444.

M. J. Kidger, Fundamental Optical Design (SPIE, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) External view of a Dewar commercialized by the French company Sofradir. (b) Internal view of a Dewar (corresponding to the orange frame represented in (a)).

Fig. 2.
Fig. 2.

Illustration of the three contributors to the angular resolution of an optical system: the Nyquist frequency 1/(2ps), the pixel cutoff frequency 1/tpix, and the optical cutoff frequency νc.

Fig. 3.
Fig. 3.

Schematic layouts of six simple optical systems and notations. (a) Plano-convex lens with the curved face towards the detector (thickness d and radius of curvature R2, R2<0). (b) Plano-convex lens with the curved face towards the scene (thickness d and radius of curvature R1, R1>0). (c), (d), (e), and (f) Four possible associations of two plano-convex lenses with the same radius of curvature (R>0) and with thickness d. Light propagates from the left to the right; the blue line at the right stands for the detector.

Fig. 4.
Fig. 4.

Optical layout of a bi-convex lens. The notations for the calculation of BFL using ray-transfer matrix formalism are provided.

Fig. 5.
Fig. 5.

Optical layout of one channel of an infrared wafer-level camera based on a single plano-convex lens. The different colors stand for different field angles.

Fig. 6.
Fig. 6.

Optical layout of one channel of an infrared wafer-level camera based on two plano-convex lenses with the same radius of curvature. The different colors stand for different field angles.

Fig. 7.
Fig. 7.

Schematic layout of the overall system exhibiting the arrays of diaphragms that prevent crosstalk between several channels (MLA: microlens array).

Fig. 8.
Fig. 8.

Photograph of the infrared wafer-level camera (compared to the size of a two-cent Euro coin).

Fig. 9.
Fig. 9.

MTF measurements for all the channels of the camera and for different values of the FOV. (a) FOV=0°, (b) FOV=37°, and (c) FOV=50°. The experimental curves are compared to the theoretical data obtained with the software Zemax. The abbreviations H and V stand for horizontal and vertical, respectively.

Fig. 10.
Fig. 10.

Image of a scene in a laboratory setting for a distance between the camera and the scene equal to 1.60 m. (a) Raw image acquired by the multichannel camera. (b) One of the undersampled subimages. (c) Linear interpolation of the undersampled subimage (b). (d) Image obtained with the shift-and-add algorithm.

Fig. 11.
Fig. 11.

Subimages acquired at distance (a) D=1.20m, (c) D=1.60m, (e) D=2.20m, (g) D=2.94m. Image obtained with the shift-and-add algorithm at distance (b) D=1.20m, (d) D=1.60m, (f) D=2.20m, (h) D=2.94m.

Tables (3)

Tables Icon

Table 1. Impact of Technological Constraints on the Optical Design of an Infrared Cryogenic Wafer-Level Camera

Tables Icon

Table 2. Focal Length and BFL of the Simple Optical Systems Illustrated in Fig. 3

Tables Icon

Table 3. Optical Characteristics of the Multichannel Architectures Corresponding to Fig. 5 (One Lens) and Fig. 6 (Two Lenses)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

f=tdet2tan(FOV/2),
νmax=min(1/(2ps),1/tpix,νc),
F=(tpixps)2.
Nch=4F.
Nb=(FOVIFOV)2,
IFOV=1fνmax.
Nbmultich=4FNbch.
(houtαout)=M.(hinαin).
NETD=THTASNR=THTAmean(ImgTH)mean(ImgTA)std(ImgTH),
M1=(101nR11).
M2=(1dn01).
M3=(10n1R21).
Mlens=(1+dR11nndnn1R2(1+dR11nn)+1nR1n1R2dn+1).
M4=(1BFL01).
(0hinf)=(1BFL01)Mlens(hin0).
1f=(n1)(1R11R2)+(n1)2ndR1R2,
BFL=f(1dR1n1n).

Metrics