Abstract

In this paper, the potential use of laser-induced breakdown spectroscopy (LIBS) for the rapid discrimination and identification of bacterial pathogens in realistic clinical specimens is investigated. Specifically, the common problem of sample contamination was studied by creating mixed samples to investigate the effect that the presence of a second contaminant bacterium in the specimen had on the LIBS-based identification of the primary pathogen. Two closely related bacterial specimens, Escherichia coli strain ATCC 25922 and Enterobacter cloacae strain ATCC 13047, were mixed together in mixing fractions of 101, 1001, and 10001. LIBS spectra from the three mixtures were reliably classified as the correct E. coli strain with 98.5% accuracy when all the mixtures were withheld from the training model and classified against spectra from pure specimens. To simulate a rapid test for the presence of urinary tract infection pathogens, LIBS spectra were obtained from specimens of Staphylococcus epidermidis obtained from distilled water and sterile urine. LIBS spectra from the urine-harvested bacteria were classified as S. epidermidis with 100% accuracy when classified using a model containing only spectra from other Staphylococci species and with 88.5% accuracy when a model containing five genera of bacteria was utilized. Bacterial specimens comprising five different genera and 13 classifiable taxonomic groups of species and strains were compiled in a library that was tested using external validation techniques. The importance of utilizing external validation techniques where the library is tested with data withheld from all previous testing and training of the model was revealed by comparing the results against “leave-one-out” cross-validation results. Last, the effect of using sequential models for the classification of a single unknown spectrum was investigated by comparing the misclassification of two closely related bacteria, E. coli and E. cloacae, when the classification was first performed using the five-genus bacterial library and then with a smaller model consisting only of E. coli and E. cloacae specimens. This result shows the utility of using successively more targeted analyses and models that use preliminary classifications from more general models as input.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205–6209 (2003).
    [CrossRef]
  2. P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
    [CrossRef]
  3. M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
    [CrossRef]
  4. M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
    [CrossRef]
  5. J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
    [CrossRef]
  6. J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
    [CrossRef]
  7. S. J. Rehse, Q. I. Mohaidat, and S. Palchaudhuri, “Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: the effect of mixed cultures and sample dilution on bacterial identification,” Appl. Opt. 49, C27–C35 (2010).
    [CrossRef]
  8. R. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010).
    [CrossRef]
  9. Q. Mohaidat, S. Palchaudhuri, and S. J. Rehse, “The effect of bacterial environmental and metabolic stresses on a LIBS-based identification of Escherichia coli and Streptococcus viridans,” Appl. Spectrosc. 65, 386–392 (2011).
    [CrossRef]
  10. D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
    [CrossRef]
  11. C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).
  12. M. Sabsabi, V. Detalle, M. A. Harith, W. Tawfik, and H. Imam, “Comparative study of two new commercial echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy,” Appl. Opt. 42, 6094–6099 (2003).
    [CrossRef]
  13. B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
    [CrossRef]
  14. P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).
  15. V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood, Gram-Positive Pathogens, 2nd ed. (ASM, 2006).
  16. N. De and M. Godlove, “Prevalence of S. aureus and S. epidermidis among patients with indwelling catheters and their antibiogram using some commonly used antibiotics,” J. Am. Sci. 6, 515–520 (2010).
  17. D. E. Hall and J. A. Snitzer, “Staphylococcus epidermidis as a cause of urinary tract infections in children,” J. Pediatr. 124, 437–438 (1994).
    [CrossRef]
  18. M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds., Mechanisms of Microbial Disease, 3rd ed. (ASM, 1999).
  19. L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
    [CrossRef]

2011 (2)

D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
[CrossRef]

Q. Mohaidat, S. Palchaudhuri, and S. J. Rehse, “The effect of bacterial environmental and metabolic stresses on a LIBS-based identification of Escherichia coli and Streptococcus viridans,” Appl. Spectrosc. 65, 386–392 (2011).
[CrossRef]

2010 (3)

2007 (3)

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

2006 (2)

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

2005 (3)

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).

2003 (2)

2000 (1)

B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
[CrossRef]

1994 (1)

D. E. Hall and J. A. Snitzer, “Staphylococcus epidermidis as a cause of urinary tract infections in children,” J. Pediatr. 124, 437–438 (1994).
[CrossRef]

Amodeo, T.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Ayala, J. A.

D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
[CrossRef]

Barlow, R.

B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
[CrossRef]

Baudelet, M.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Bossu, M.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Caceres, J. O.

D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
[CrossRef]

Conterno, L. O.

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

Cooper, J.

P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).

Coyle, D.

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

Cremers, D. A.

D’Arcy, H.

B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
[CrossRef]

De, N.

N. De and M. Godlove, “Prevalence of S. aureus and S. epidermidis among patients with indwelling catheters and their antibiogram using some commonly used antibiotics,” J. Am. Sci. 6, 515–520 (2010).

de Villena, F. J.

D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
[CrossRef]

DeLucia, F. C.

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205–6209 (2003).
[CrossRef]

Detalle, V.

Diedrich, J.

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

Dixon, P. B.

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

Dupre, J. M.

Eisenstein, B. I.

M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds., Mechanisms of Microbial Disease, 3rd ed. (ASM, 1999).

Engleberg, N. C.

M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds., Mechanisms of Microbial Disease, 3rd ed. (ASM, 1999).

Ferretti, J. J.

V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood, Gram-Positive Pathogens, 2nd ed. (ASM, 2006).

Fischetti, V. A.

V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood, Gram-Positive Pathogens, 2nd ed. (ASM, 2006).

Foxman, B.

B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
[CrossRef]

Frejafon, E.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Gillespie, B.

B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
[CrossRef]

Godlove, M.

N. De and M. Godlove, “Prevalence of S. aureus and S. epidermidis among patients with indwelling catheters and their antibiogram using some commonly used antibiotics,” J. Am. Sci. 6, 515–520 (2010).

Gustafson, J. E.

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Hahn, D. W.

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

Hall, D. E.

D. E. Hall and J. A. Snitzer, “Staphylococcus epidermidis as a cause of urinary tract infections in children,” J. Pediatr. 124, 437–438 (1994).
[CrossRef]

Harith, M. A.

Imam, H.

Izquierdo-Hornillos, R. C.

D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
[CrossRef]

Jovelet, J.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Kleijnen, J.

P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).

Laloi, P.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Marcos-Martinez, D.

D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
[CrossRef]

McNesby, K. L.

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205–6209 (2003).
[CrossRef]

Medoff, G.

M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds., Mechanisms of Microbial Disease, 3rd ed. (ASM, 1999).

Miziolek, A. W.

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).

A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, “Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential,” Appl. Opt. 42, 6205–6209 (2003).
[CrossRef]

Mohaidat, Q.

Mohaidat, Q. I.

Multari, R.

Munson, C. A.

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).

Novick, R. P.

V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood, Gram-Positive Pathogens, 2nd ed. (ASM, 2006).

Palchaudhuri, S.

Q. Mohaidat, S. Palchaudhuri, and S. J. Rehse, “The effect of bacterial environmental and metabolic stresses on a LIBS-based identification of Escherichia coli and Streptococcus viridans,” Appl. Spectrosc. 65, 386–392 (2011).
[CrossRef]

S. J. Rehse, Q. I. Mohaidat, and S. Palchaudhuri, “Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: the effect of mixed cultures and sample dilution on bacterial identification,” Appl. Opt. 49, C27–C35 (2010).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

Piehler, T.

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).

Portnoy, D. A.

V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood, Gram-Positive Pathogens, 2nd ed. (ASM, 2006).

Ramotar, K.

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

Rehse, S. J.

Q. Mohaidat, S. Palchaudhuri, and S. J. Rehse, “The effect of bacterial environmental and metabolic stresses on a LIBS-based identification of Escherichia coli and Streptococcus viridans,” Appl. Spectrosc. 65, 386–392 (2011).
[CrossRef]

S. J. Rehse, Q. I. Mohaidat, and S. Palchaudhuri, “Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: the effect of mixed cultures and sample dilution on bacterial identification,” Appl. Opt. 49, C27–C35 (2010).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

Rood, J. I.

V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood, Gram-Positive Pathogens, 2nd ed. (ASM, 2006).

Roth, V. R.

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

Sabsabi, M.

Samuels, A. C.

Schaechter, M.

M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds., Mechanisms of Microbial Disease, 3rd ed. (ASM, 1999).

Shymanski, J.

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

Snitzer, J. A.

D. E. Hall and J. A. Snitzer, “Staphylococcus epidermidis as a cause of urinary tract infections in children,” J. Pediatr. 124, 437–438 (1994).
[CrossRef]

Sobel, J. D.

B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
[CrossRef]

Tawfik, W.

Toye, B.

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

van Walraven, C.

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

Watt, I.

P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).

Westwood, M.

P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).

Whiting, P.

P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).

Wolf, J.-P.

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

Yu, J.

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

Anal. Chem. (1)

P. B. Dixon and D. W. Hahn, “Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy,” Anal. Chem. 77, 631–638 (2005).
[CrossRef]

Ann. Epidemiol. (1)

B. Foxman, R. Barlow, H. D’Arcy, B. Gillespie, and J. D. Sobel, “Urinary tract infection: self-reported incidence and associated costs,” Ann. Epidemiol. 10, 509–515 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

M. Baudelet, J. Yu, M. Bossu, J. Jovelet, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 89, 163903 (2006).
[CrossRef]

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 90, 163901 (2007).
[CrossRef]

Appl. Spectrosc. (2)

BMC Pediatr. (1)

P. Whiting, M. Westwood, I. Watt, J. Cooper, and J. Kleijnen, “Rapid tests and urine sampling techniques for the diagnosis of urinary tract infection (UTI) in children under five years: a systematic review,” BMC Pediatr. 5, 1471–2431 (2005).

Infect. Cont. Hosp. Ep. (1)

L. O. Conterno, J. Shymanski, K. Ramotar, B. Toye, C. van Walraven, D. Coyle, and V. R. Roth, “Real-time polymerase chain reaction detection of methicillin-resistant Staphylococcus aureus: impact on nosocomial transmission and costs,” Infect. Cont. Hosp. Ep. 28, 1134–1141 (2007).
[CrossRef]

J. Am. Sci. (1)

N. De and M. Godlove, “Prevalence of S. aureus and S. epidermidis among patients with indwelling catheters and their antibiogram using some commonly used antibiotics,” J. Am. Sci. 6, 515–520 (2010).

J. Appl. Phys. (2)

J. Diedrich, S. J. Rehse, and S. Palchaudhuri, “Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 102, 014702 (2007).
[CrossRef]

M. Baudelet, L. Guyon, J. Yu, J.-P. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, “Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime,” J. Appl. Phys. 99, 084701 (2006).
[CrossRef]

J. Pediatr. (1)

D. E. Hall and J. A. Snitzer, “Staphylococcus epidermidis as a cause of urinary tract infections in children,” J. Pediatr. 124, 437–438 (1994).
[CrossRef]

Spectrochim. Acta B (1)

C. A. Munson, F. C. DeLucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta B 60, 1217–1224 (2005).

Talanta (1)

D. Marcos-Martinez, J. A. Ayala, R. C. Izquierdo-Hornillos, F. J. de Villena, and J. O. Caceres, “Identification and discrimination of bacterial strains by laser induced breakdown spectroscopy and neural networks,” Talanta 84, 730–737 (2011).
[CrossRef]

Other (2)

M. Schaechter, N. C. Engleberg, B. I. Eisenstein, and G. Medoff, eds., Mechanisms of Microbial Disease, 3rd ed. (ASM, 1999).

V. A. Fischetti, R. P. Novick, J. J. Ferretti, D. A. Portnoy, and J. I. Rood, Gram-Positive Pathogens, 2nd ed. (ASM, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

DFA plots showing the first two discriminant function scores from a DFA of LIBS spectra obtained from pure samples of three bacteria, E. cloacae strain ATCC 13047, E. coli strain ATCC 25922, and M. smegmatis, as well as three mixtures of the E. coli and E. cloacae at various mixing fractions. (a) All classes were input to the model, but no relationships were input, indicating the high similarity between the pure E. coli spectra and those of the mixtures. (b) Spectra from the three mixtures were declassified and tested against the model constructed only from spectra from pure specimens. All mixture spectra but one were correctly identified as E. coli.

Fig. 2.
Fig. 2.

DFA plots showing the first two discriminant function scores from a DFA of LIBS spectra from S. epidermidis bacterial cells harvested from both urine and deionized water specimens. (a) The model was constructed from E. coli strain C, S. epidermidis cells harvested from water, and S. viridans. None of the spectra in the model were obtained from any urine-exposed cells. Spectra from S. epidermidis cells harvested from urine suspensions were tested with this model, and 100% of the specimens were correctly identified as S. epidermidis. (b) To complicate the test, the S. viridans and E. coli spectra were replaced with spectra from two other staphylococci species: aureus and saprophyticus. All cells were obtained from deionized water specimens. Spectra from S. epidermidis cells harvested from urine suspensions were tested with this model, and again 100% of the specimens were correctly identified as S. epidermidis.

Fig. 3.
Fig. 3.

Spectral library. Plots showing the first three discriminant function scores from a DFA of 669 bacterial LIBS spectra collected in our laboratory over three years. (a) The spectra were classified into five distinct classes on the basis of bacterial genus. (b) The spectra were classified into 13 unique bacterial classes (see Table 1). The symbols of the 13 classes have been made uniform with (a) to show the similarities between the DFA when it is performed in these two different ways.

Tables (2)

Tables Icon

Table 1. Identities of the Classes Used to Construct a Spectral Library Model Composed of 669 Bacterial LIBS Spectra

Tables Icon

Table 2. Truth Tables from a DFA Classification of 669 Bacterial LIBS Spectra in a Five-Genus DFA Model

Metrics