Abstract

Double-pulse laser-induced breakdown spectroscopy (LIBS) was recently proposed for the analysis of underwater samples, since it overcomes the drawbacks of rapid plasma quenching and of large continuum emission, typical of single-pulse ablation. Despite the attractiveness of the method, this approach suffers nevertheless from a poor spectroscopic reproducibility, which is partially due to the scarce reproducibility of the cavitation bubble induced by the first laser pulse, since pressure and dimensions of the bubble strongly affect plasma emission. In this work, we investigated the reproducibility and the dynamics of the cavitation bubble induced on a solid target in water, and how they depend on pulse duration, energy, and wavelength, as well as on target composition. Results are discussed in terms of the effects on the laser ablation process produced by the crater formation and by the interaction of the laser pulse with floating particles and gas bubbles. This work, preliminary to the optimization of the spectroscopic signal, provides an insight of the phenomena occurring during laser ablation in water, together with useful information for the choice of the laser source to be used in the apparatus.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).
  2. A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 52, 25–39 (1997).
  3. V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).
  4. V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).
  5. V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).
  6. A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).
  7. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).
  8. Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta B 45, 1353–1367 (1990).
  9. R. H. Cole, Underwater Explosions (Princeton University, 1948).
  10. M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425–484 (2002).
    [CrossRef]
  11. T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
    [CrossRef]
  12. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
    [CrossRef]
  13. B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
    [CrossRef]
  14. W. K. Soh and A. A. Karimi, “On a calculation of heat transfer in a pulsating bubble,” Appl. Math. Model. 20, 638–645 (1996).
    [CrossRef]
  15. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1995).
  16. N. Takada, T. Nakano, and K. Sasaki, “Formation of cavitation-induced pits on target surface in liquid-phase laser ablation,” Appl. Phys. A 101, 255–258 (2010).
    [CrossRef]
  17. J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84, 5766–5771 (1998).
    [CrossRef]
  18. R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
    [CrossRef]
  19. T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004).
    [CrossRef]
  20. T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010).
    [CrossRef]
  21. G. Compagnini, A. A. Scalisi, and O. Puglisi, “Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film,” Phys. Chem. Chem. Phys. 4, 2787–2791 (2002).
    [CrossRef]
  22. B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminium in liquid,” J. Appl. Phys. 108, 064906 (2010).
    [CrossRef]
  23. C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
    [CrossRef]
  24. G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
    [CrossRef]
  25. Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010).
    [CrossRef]
  26. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  27. F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
    [CrossRef]
  28. K. Yamada, K. Miyajima, and F. Mafuné, “Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband,” J. Phys. Chem. C 111, 11246–11251 (2007).
    [CrossRef]
  29. A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
  30. L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48, 3671–3680 (2009).
    [CrossRef]
  31. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
    [CrossRef]
  32. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165(1996).
    [CrossRef]
  33. J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
    [CrossRef]
  34. J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001).
    [CrossRef]
  35. S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000).
    [CrossRef]
  36. T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).
  37. A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).
  38. P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).
  39. K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
    [CrossRef]
  40. A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67, 3535–3537 (1995).
    [CrossRef]

2010 (6)

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

N. Takada, T. Nakano, and K. Sasaki, “Formation of cavitation-induced pits on target surface in liquid-phase laser ablation,” Appl. Phys. A 101, 255–258 (2010).
[CrossRef]

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010).
[CrossRef]

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminium in liquid,” J. Appl. Phys. 108, 064906 (2010).
[CrossRef]

Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010).
[CrossRef]

F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

2009 (4)

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).

L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, and J. L. Ocaña, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48, 3671–3680 (2009).
[CrossRef]

R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
[CrossRef]

2008 (2)

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).

G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
[CrossRef]

2007 (3)

K. Yamada, K. Miyajima, and F. Mafuné, “Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband,” J. Phys. Chem. C 111, 11246–11251 (2007).
[CrossRef]

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).

2006 (1)

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[CrossRef]

2005 (3)

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

2004 (3)

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).

T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004).
[CrossRef]

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).

2003 (1)

A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).

2002 (2)

G. Compagnini, A. A. Scalisi, and O. Puglisi, “Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film,” Phys. Chem. Chem. Phys. 4, 2787–2791 (2002).
[CrossRef]

M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425–484 (2002).
[CrossRef]

2001 (2)

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001).
[CrossRef]

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

2000 (1)

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000).
[CrossRef]

1999 (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

1998 (1)

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84, 5766–5771 (1998).
[CrossRef]

1997 (1)

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 52, 25–39 (1997).

1996 (3)

T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
[CrossRef]

W. K. Soh and A. A. Karimi, “On a calculation of heat transfer in a pulsating bubble,” Appl. Math. Model. 20, 638–645 (1996).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165(1996).
[CrossRef]

1995 (1)

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67, 3535–3537 (1995).
[CrossRef]

1990 (1)

Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta B 45, 1353–1367 (1990).

1972 (1)

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

Akhatov, I.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

Alloncle, A. P.

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84, 5766–5771 (1998).
[CrossRef]

Angelopoulos, G. N.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).

Autric, M.

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84, 5766–5771 (1998).
[CrossRef]

Bao, R.

Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010).
[CrossRef]

Barcikowski, S.

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).

Benedetti, P. A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
[CrossRef]

Birngruber, R.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Bogaerts, A.

A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).

Bonse, J.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001).
[CrossRef]

Bor, Z.

T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
[CrossRef]

Brennen, C. E.

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1995).

Brenner, M. P.

M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425–484 (2002).
[CrossRef]

Bron, W. E.

T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
[CrossRef]

Bulatov, V.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010).
[CrossRef]

Busch, S.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165(1996).
[CrossRef]

Capitelli, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).

Casavola, A.

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

Chen, Z.

A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).

Cheng, J.

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

Chichkov, B. N.

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).

Chrisey, D. B.

Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010).
[CrossRef]

Colao, F.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).

Cole, R. H.

R. H. Cole, Underwater Explosions (Princeton University, 1948).

Colonna, G.

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

Compagnini, G.

G. Compagnini, A. A. Scalisi, and O. Puglisi, “Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film,” Phys. Chem. Chem. Phys. 4, 2787–2791 (2002).
[CrossRef]

Couris, S.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).

Cremers, D. A.

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 52, 25–39 (1997).

Cristoforetti, G.

G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).

Cui, Y.

R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
[CrossRef]

De Giacomo, A.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

De Pascale, O.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

Dearden, G.

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

Dell’Aglio, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).

DellAglio, M.

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

Edwardson, S. P.

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

Fantoni, R.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).

Ferris, M. J.

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 52, 25–39 (1997).

Fukami, K.

T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).

Giammanco, F.

F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Gijbels, R.

A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).

Giorgietti, E.

F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Giusti, A.

F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Greif, R.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000).
[CrossRef]

Hahn, A.

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).

Hammer, D. X.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Han, B.

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

Hilgenfeldt, S.

M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425–484 (2002).
[CrossRef]

Huang, Y.

Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010).
[CrossRef]

Iida, Y.

Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta B 45, 1353–1367 (1990).

Isselin, J. C.

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84, 5766–5771 (1998).
[CrossRef]

Jovicevic, S.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).

Juhasz, T.

T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
[CrossRef]

Karimi, A. A.

W. K. Soh and A. A. Karimi, “On a calculation of heat transfer in a pulsating bubble,” Appl. Math. Model. 20, 638–645 (1996).
[CrossRef]

Kastis, G. A.

T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
[CrossRef]

Kautek, W.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001).
[CrossRef]

Kelly, R.

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67, 3535–3537 (1995).
[CrossRef]

Kitamura, N.

T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004).
[CrossRef]

Kovalchuk, T.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Kruger, J.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001).
[CrossRef]

Kumar, B.

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminium in liquid,” J. Appl. Phys. 108, 064906 (2010).
[CrossRef]

Lauterborn, W.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

Lazic, V.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).

Legnaioli, S.

G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).

Lindau, O.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

Lohse, D.

M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425–484 (2002).
[CrossRef]

Longo, S.

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

Lu, J.

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
[CrossRef]

Mafuné, F.

K. Yamada, K. Miyajima, and F. Mafuné, “Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband,” J. Phys. Chem. C 111, 11246–11251 (2007).
[CrossRef]

Mao, S. S.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000).
[CrossRef]

Mao, X.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000).
[CrossRef]

Marsili, P.

F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

Martí-López, L.

Masai, F.

T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).

Mettin, R.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

Miotello, A.

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67, 3535–3537 (1995).
[CrossRef]

Miyajima, K.

K. Yamada, K. Miyajima, and F. Mafuné, “Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband,” J. Phys. Chem. C 111, 11246–11251 (2007).
[CrossRef]

Morales, M.

Nahen, K.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Nakano, T.

N. Takada, T. Nakano, and K. Sasaki, “Formation of cavitation-induced pits on target surface in liquid-phase laser ablation,” Appl. Phys. A 101, 255–258 (2010).
[CrossRef]

Ni, X.

R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
[CrossRef]

Ni, X. W.

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Noojin, G. D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Ocaña, J. L.

Ocaña, R.

Ogata, Y. H.

T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).

Palagas, C.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).

Palleschi, V.

G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).

Papamantellos, D. N.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).

Parlitz, U.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165(1996).
[CrossRef]

Perrie, W.

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

Pichahchy, A. E.

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 52, 25–39 (1997).

Porneala, C.

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[CrossRef]

Porro, J. A.

Puglisi, O.

G. Compagnini, A. A. Scalisi, and O. Puglisi, “Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film,” Phys. Chem. Chem. Phys. 4, 2787–2791 (2002).
[CrossRef]

Rockwell, B. A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Russo, R. E.

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000).
[CrossRef]

Sakka, T.

T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).

Salvetti, A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).

Sasaki, K.

N. Takada, T. Nakano, and K. Sasaki, “Formation of cavitation-induced pits on target surface in liquid-phase laser ablation,” Appl. Phys. A 101, 255–258 (2010).
[CrossRef]

Scalisi, A. A.

G. Compagnini, A. A. Scalisi, and O. Puglisi, “Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film,” Phys. Chem. Chem. Phys. 4, 2787–2791 (2002).
[CrossRef]

Schechter, I.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010).
[CrossRef]

Semaltianos, N. G.

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

Sharp, M.

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

Shen, Z. H.

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

Soh, W. K.

W. K. Soh and A. A. Karimi, “On a calculation of heat transfer in a pulsating bubble,” Appl. Math. Model. 20, 638–645 (1996).
[CrossRef]

Spizzicchino, V.

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).

Spizzichino, V.

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).

Stavropoulos, P.

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).

Sudrez, C.

T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
[CrossRef]

Taccogna, F.

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

Takada, N.

N. Takada, T. Nakano, and K. Sasaki, “Formation of cavitation-induced pits on target surface in liquid-phase laser ablation,” Appl. Phys. A 101, 255–258 (2010).
[CrossRef]

Thareja, R. K.

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminium in liquid,” J. Appl. Phys. 108, 064906 (2010).
[CrossRef]

Theisen, D.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Tognoni, E.

G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).

Toker, G.

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010).
[CrossRef]

Topolnikov, A.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

Tsuboi, Y.

T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004).
[CrossRef]

Tsuji, M.

T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004).
[CrossRef]

Tsuji, T.

T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004).
[CrossRef]

Ujihara, K.

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

Vakhitova, N.

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

Vertes, A.

A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).

Vogel, A.

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165(1996).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Watkins, K. G.

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

Willis, D. A.

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[CrossRef]

Wrobel, J. M.

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001).
[CrossRef]

Xu, R.

R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
[CrossRef]

Yamada, K.

K. Yamada, K. Miyajima, and F. Mafuné, “Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband,” J. Phys. Chem. C 111, 11246–11251 (2007).
[CrossRef]

Yan, Z.

Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010).
[CrossRef]

Yang, B.

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

Zhang, H. C.

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

Zhao, R.

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
[CrossRef]

Appl. Math. Model. (1)

W. K. Soh and A. A. Karimi, “On a calculation of heat transfer in a pulsating bubble,” Appl. Math. Model. 20, 638–645 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (3)

N. Takada, T. Nakano, and K. Sasaki, “Formation of cavitation-induced pits on target surface in liquid-phase laser ablation,” Appl. Phys. A 101, 255–258 (2010).
[CrossRef]

J. Cheng, W. Perrie, M. Sharp, S. P. Edwardson, N. G. Semaltianos, G. Dearden, and K. G. Watkins, “Single-pulse drilling study on Au, Al, and Ti alloy by using a picosecond laser,” Appl. Phys. A 95, 739–746 (2009).
[CrossRef]

J. Bonse, J. M. Wrobel, J. Kruger, and W. Kautek, “Ultrashort-pulse laser ablation of indium phosphide in air,” Appl. Phys. A 72, 89–94 (2001).
[CrossRef]

Appl. Phys. B (1)

A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271–280 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

S. S. Mao, X. Mao, R. Greif, and R. E. Russo, “Initiation of an early-stage plasma during picosecond laser ablation of solids,” Appl. Phys. Lett. 77, 2464–2466 (2000).
[CrossRef]

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[CrossRef]

A. Miotello and R. Kelly, “Critical assessment of thermal models for laser sputtering at high fluences,” Appl. Phys. Lett. 67, 3535–3537 (1995).
[CrossRef]

Appl. Surf. Sci. (1)

T. Tsuji, Y. Tsuboi, N. Kitamura, and M. Tsuji, “Microsecond-resolved imaging of laser ablation at solid-liquid interface: investigation of formation process of nano-size metal colloids,” Appl. Surf. Sci. 229, 365–371 (2004).
[CrossRef]

Chem. Phys. Lett. (1)

T. Kovalchuk, G. Toker, V. Bulatov, and I. Schechter, “Laser breakdown in alcohols and water induced by λ=1064  nmnanosecond pulses,” Chem. Phys. Lett. 500, 242–250(2010).
[CrossRef]

Eur. J. Mech. B, Fluids (1)

B. Han, B. Yang, R. Zhao, H. C. Zhang, Z. H. Shen, J. Lu, and X. W. Ni, “The influence of thermodynamic gas parameters on laser-induced bubble dynamics in water,” Eur. J. Mech. B, Fluids 29, 430–434 (2010).
[CrossRef]

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148–165(1996).
[CrossRef]

J. Anal. At. Spectrom. (1)

G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, and P. A. Benedetti, “Observation of different mass removal regimes during the laser ablation of an aluminium target in air,” J. Anal. At. Spectrom. 23, 1518–1528 (2008).
[CrossRef]

J. Appl. Phys. (3)

B. Kumar and R. K. Thareja, “Synthesis of nanoparticles in laser ablation of aluminium in liquid,” J. Appl. Phys. 108, 064906 (2010).
[CrossRef]

J. C. Isselin, A. P. Alloncle, and M. Autric, “On laser induced single bubble near a solid boundary: contribution to the understanding of erosion phenomena,” J. Appl. Phys. 84, 5766–5771 (1998).
[CrossRef]

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).

J. Phys. Chem. C (3)

Z. Yan, R. Bao, Y. Huang, and D. B. Chrisey, “Hollow particles formed on laser-induced bubbles by excimer laser ablation of Al in liquid,” J. Phys. Chem. C 114, 11370–11374 (2010).
[CrossRef]

F. Giammanco, E. Giorgietti, P. Marsili, and A. Giusti, “Experimental and theoretical analysis of photofragmentation of Au nanoparticles by picosecond laser radiation,” J. Phys. Chem. C 114, 3354–3363 (2010).
[CrossRef]

K. Yamada, K. Miyajima, and F. Mafuné, “Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband,” J. Phys. Chem. C 111, 11246–11251 (2007).
[CrossRef]

Lasers Surg. Med. (1)

T. Juhasz, G. A. Kastis, C. Sudrez, Z. Bor, and W. E. Bron, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31 (1996).
[CrossRef]

Optik (1)

R. Xu, R. Zhao, Y. Cui, J. Lu, and X. Ni, “The collapse and rebound of gas-vapour cavity on metal surface,” Optik 120, 115–120 (2009).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

G. Compagnini, A. A. Scalisi, and O. Puglisi, “Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film,” Phys. Chem. Chem. Phys. 4, 2787–2791 (2002).
[CrossRef]

Phys. Fluids (1)

I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13, 2805–2819 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

M. P. Brenner, S. Hilgenfeldt, and D. Lohse, “Single-bubble sonoluminescence,” Rev. Mod. Phys. 74, 425–484 (2002).
[CrossRef]

Spectrochim. Acta B (11)

A. De Giacomo, M. Dell’Aglio, O. De Pascale, and M. Capitelli, “From single pulse to double pulse ns-laser induced breakdown spectroscopy under water: elemental analysis of aqueous solutions and submerged solid samples,” Spectrochim. Acta B 62, 721–738 (2007).

A. E. Pichahchy, D. A. Cremers, and M. J. Ferris, “Elemental analysis of metals under water using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 52, 25–39 (1997).

V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, “Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters,” Spectrochim. Acta B 62, 30–39 (2007).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Recognition of archeological materials underwater by laser induced breakdown spectroscopy,” Spectrochim. Acta B 60, 1014–1024(2005).

V. Lazic, F. Colao, R. Fantoni, and V. Spizzicchino, “Laser-induced breakdown spectroscopy in water: improvement of the detection threshold by signal processing,” Spectrochim. Acta B 60, 1002–1013 (2005).

A. Casavola, A. De Giacomo, M. DellAglio, F. Taccogna, G. Colonna, O. De Pascale, and S. Longo, “Experimental investigation and modeling of double pulse laser induced plasma spectroscopy under water,” Spectrochim. Acta B 60, 975–985(2005).

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “Influence of ambient gas pressure on laser induced breakdown spectroscopy technique in the parallel double pulse configuration,” Spectrochim. Acta B 59, 1907–1917 (2004).

Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta B 45, 1353–1367 (1990).

T. Sakka, F. Masai, K. Fukami, and Y. H. Ogata, “Spectral profile of atomic emission lines and effects of pulse duration on laser ablation in liquid,” Spectrochim. Acta B 64, 981–985 (2009).

A. Bogaerts, Z. Chen, R. Gijbels, and A. Vertes, “Laser ablation for analytical sampling: what can we learn from modeling?,” Spectrochim. Acta B 58, 1867–1893 (2003).

P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D. N. Papamantellos, and S. Couris, “Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers,” Spectrochim. Acta B 59, 1885–1892 (2004).

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

R. H. Cole, Underwater Explosions (Princeton University, 1948).

C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics