Abstract

Correlation of limestone beds is commonly based on a variety of features, including the age of the bed, the fossil assemblage, internal sedimentary structures, and the relationship to other units in the stratigraphy. This study uses laser-induced breakdown spectroscopy (LIBS) to correlate 16 limestone beds from Kansas, USA, using three multivariate techniques: (1) soft independent modeling of class analogy (SIMCA) classification, (2) a partial least squares regression, 1 variable (PLS-1) model in which the spectra are regressed against a matrix of the indicator variables 1 through 16, and (3) a matching algorithm that consists of a sequence of binary PLS-1 models. Each gravel-sized limestone particle was analyzed by one LIBS shot; ten spectra were averaged into a single spectrum for chemometric analysis. The entire spectrum (198–969 nm wavelength) is used for multivariate analysis; the only preprocessing is averaging. The SIMCA and PLS-1 models fail to discriminate among the beds, which are chemically similar. In contrast, the matching algorithm has a success rate of 95% to 96%, using half of the spectra to train the model and the other half of the spectra to validate it. However, 100% success can be accomplished by accepting the classification of the majority of spectra for a given bed as the correct classification. This study indicates that LIBS can be applied to complex geologic correlation problems and provide rapid, accurate results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
    [CrossRef]
  2. K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
    [CrossRef]
  3. R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
    [CrossRef]
  4. J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
    [CrossRef]
  5. A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
    [CrossRef]
  6. M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
    [CrossRef]
  7. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
    [CrossRef]
  8. B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
    [CrossRef]
  9. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
    [CrossRef]
  10. D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).
  11. D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
    [CrossRef]
  12. C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
    [CrossRef]
  13. M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
    [CrossRef]
  14. M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
    [CrossRef]
  15. J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).
    [CrossRef]
  16. D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser-induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta B 63, 763–769 (2008).
    [CrossRef]
  17. D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta B 64, 1048–1058 (2009).
    [CrossRef]
  18. S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
    [CrossRef]
  19. J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
    [CrossRef]
  20. M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
    [CrossRef]
  21. C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
    [CrossRef]
  22. R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
    [CrossRef]
  23. F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
    [CrossRef]
  24. K. L. Maxwell and M. K. Hudson, “Spectral study of metallic molecular bands in hybrid rocket plumes,” J. Pyrotech. 21, 59–69 (2005).
  25. K. A. Yetter, “Determining provenance of corundum using laser-induced breakdown spectroscopy (LIBS) and chemometric analysis,” M. S. thesis (New Mexico State University, 2011).
  26. I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
    [CrossRef]
  27. J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Archeological applications of laser-induced breakdown spectroscopy: an example from the Coso Volcanic Field, California, using advanced statistical signal processing analysis,” Appl. Opt. 49, C120–C131.
    [CrossRef]
  28. N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007).
    [CrossRef]
  29. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
    [CrossRef]
  30. J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
    [CrossRef]
  31. N. L. Lanza, R. C. Wiens, S. M. Clegg, A. M. Ollila, S. D. Humphries, H. E. Newsom, and J. E. BarefieldChemCam Team, “Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars,” Appl. Opt. 49, C211–C217.
    [CrossRef]
  32. J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
    [CrossRef]
  33. D. E. Zeller, “The stratigraphic succession in Kansas,” Bull. Kans. Geol. Sur. 189, 81 (1968).
  34. R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy (LIBS) for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010).
    [CrossRef]
  35. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  36. S. Wold, “Pattern recognition by means of disjoint principal components models,” Pattern Recogn. 8, 127–139(1976).
    [CrossRef]
  37. S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. Lab. Syst. 58, 109–130 (2001).
    [CrossRef]

2011 (4)

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

2010 (4)

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy (LIBS) for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010).
[CrossRef]

2009 (4)

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta B 64, 1048–1058 (2009).
[CrossRef]

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
[CrossRef]

2008 (2)

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser-induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta B 63, 763–769 (2008).
[CrossRef]

2007 (4)

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007).
[CrossRef]

2006 (4)

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).
[CrossRef]

2005 (3)

D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

K. L. Maxwell and M. K. Hudson, “Spectral study of metallic molecular bands in hybrid rocket plumes,” J. Pyrotech. 21, 59–69 (2005).

2004 (1)

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

2002 (3)

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

2001 (1)

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

2000 (1)

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
[CrossRef]

1976 (1)

S. Wold, “Pattern recognition by means of disjoint principal components models,” Pattern Recogn. 8, 127–139(1976).
[CrossRef]

1968 (1)

D. E. Zeller, “The stratigraphic succession in Kansas,” Bull. Kans. Geol. Sur. 189, 81 (1968).

André, N.

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Angelone, M.

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

Anzano, J. M.

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
[CrossRef]

Ashley, G. M.

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

Baliva, A.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Banks, D.

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

Barbini, R.

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

Barefield, J. E.

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
[CrossRef]

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

N. L. Lanza, R. C. Wiens, S. M. Clegg, A. M. Ollila, S. D. Humphries, H. E. Newsom, and J. E. BarefieldChemCam Team, “Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars,” Appl. Opt. 49, C211–C217.
[CrossRef]

Baron, D.

Boiron, M.-C.

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

Bol’shakov, A. A.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Bouchard, P.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Bousquet, B.

J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).
[CrossRef]

Brown, E. A.

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

Canioni, L.

J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).
[CrossRef]

Capitelli, M.

A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Carmosino, M. L.

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

Cathelineau, M.

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).

Chabiron, A.

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

Charoy, B.

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

Clegg, S. M.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
[CrossRef]

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

N. L. Lanza, R. C. Wiens, S. M. Clegg, A. M. Ollila, S. D. Humphries, H. E. Newsom, and J. E. BarefieldChemCam Team, “Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars,” Appl. Opt. 49, C211–C217.
[CrossRef]

Coiron, M. C.

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

Colao, F.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

Collins, L.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Cremers, D. A.

R. A. Multari, D. A. Cremers, J. M. Dupre, and J. E. Gustafson, “The use of laser-induced breakdown spectroscopy (LIBS) for distinguishing between bacterial pathogen species and strains,” Appl. Spectrosc. 64, 750–759 (2010).
[CrossRef]

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Crespo, T. M.

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

Cuney, M.

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).

Cunningham, A. P.

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta B 64, 1048–1058 (2009).
[CrossRef]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser-induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta B 63, 763–769 (2008).
[CrossRef]

De Giacomo, A.

A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

De Giocomo, A.

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

De Lucia, F. C.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007).
[CrossRef]

De Pascale, O.

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Death, D. L.

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta B 64, 1048–1058 (2009).
[CrossRef]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser-induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta B 63, 763–769 (2008).
[CrossRef]

Del’Aglio, M.

A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Delaney, J. S.

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

Dell’Aglio, M.

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

DeLucia, F. C.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

Derome, D.

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).

Doucet, F. R.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Draucker, A.

Driese, S. G.

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

Dubessey, J.

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

Dupre, J. M.

Dyar, M. D.

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
[CrossRef]

Ebinger, M. H.

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Eriksson, L.

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

Fabbri, F.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Fabre, C.

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

Fantoni, R.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

Fichet, P.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

Galiová, M.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Gauduiso, R.

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

Gornushkin, I. B.

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
[CrossRef]

Gottfried, J. L.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Archeological applications of laser-induced breakdown spectroscopy: an example from the Coso Volcanic Field, California, using advanced statistical signal processing analysis,” Appl. Opt. 49, C120–C131.
[CrossRef]

Gustafson, J. E.

Harmon, R. S.

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007).
[CrossRef]

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

J. J. Remus, J. L. Gottfried, R. S. Harmon, A. Draucker, D. Baron, and R. Yohe, “Archeological applications of laser-induced breakdown spectroscopy: an example from the Coso Volcanic Field, California, using advanced statistical signal processing analysis,” Appl. Opt. 49, C120–C131.
[CrossRef]

Harris, R. D.

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Hudson, M. K.

K. L. Maxwell and M. K. Hudson, “Spectral study of metallic molecular bands in hybrid rocket plumes,” J. Pyrotech. 21, 59–69 (2005).

Humphries, S.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Humphries, S. D.

Jenkins, R. F.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

Kaiser, J.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Kanický, V.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Konecná, V.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Kosierb, R.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Labbé, N.

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Lacour, J.-L.

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

Lane, M. D.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

Lanza, N. L.

Lazic, V.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

Lhomme, T.

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).

Liska, M.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Lithgow, G.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Longo, S.

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Manhès, G.

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

Mao, X.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Marinangeli, L.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Martin, M. Z.

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Martine, M. A.

C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Mauchien, P.

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

Maurice, S.

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

Maxwell, K. L.

K. L. Maxwell and M. K. Hudson, “Spectral study of metallic molecular bands in hybrid rocket plumes,” J. Pyrotech. 21, 59–69 (2005).

McKay, C. P.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

McManus, C.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

McManus, C. E.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

McMillan, N. J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007).
[CrossRef]

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

Miziolek, A.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

Miziolek, A. W.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007).
[CrossRef]

Multari, R. A.

Newsom, H. E.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

N. L. Lanza, R. C. Wiens, S. M. Clegg, A. M. Ollila, S. D. Humphries, H. E. Newsom, and J. E. BarefieldChemCam Team, “Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars,” Appl. Opt. 49, C211–C217.
[CrossRef]

Novotný,

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Novotný, K.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Ollila, A. M.

Ori, G. G.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Otruba, V.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

Paluci, A.

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

Paolini, A.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Perry, D. L.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Pollard, L. J.

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta B 64, 1048–1058 (2009).
[CrossRef]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser-induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta B 63, 763–769 (2008).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Remus, J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Remus, J. J.

Ruíz-Medina, A.

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
[CrossRef]

Russo, R. E.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Sabsabi, M.

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

Sallé, B.

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

Sarger, L.

J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).
[CrossRef]

Schaefer, M. W.

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

Senesi, G. S.

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

Sirven, J.-B.

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).
[CrossRef]

Sjöström, M.

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

Sklute, E.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
[CrossRef]

Smith, B. W.

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
[CrossRef]

Smith, C. A.

C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Sorkhabi, O.

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Thompson, J. R.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

Tucker, J. M.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

Vaniman, D. T.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

Veirs, D. K.

C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

Walsh, M. E.

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

Wiens, R. C.

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
[CrossRef]

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

N. L. Lanza, R. C. Wiens, S. M. Clegg, A. M. Ollila, S. D. Humphries, H. E. Newsom, and J. E. BarefieldChemCam Team, “Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars,” Appl. Opt. 49, C211–C217.
[CrossRef]

Winefordner, J. D.

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
[CrossRef]

Wold, S.

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

S. Wold, “Pattern recognition by means of disjoint principal components models,” Pattern Recogn. 8, 127–139(1976).
[CrossRef]

Wullschleger, S. D.

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Yetter, K. A.

K. A. Yetter, “Determining provenance of corundum using laser-induced breakdown spectroscopy (LIBS) and chemometric analysis,” M. S. thesis (New Mexico State University, 2011).

Yohe, R.

Zeller, D. E.

D. E. Zeller, “The stratigraphic succession in Kansas,” Bull. Kans. Geol. Sur. 189, 81 (1968).

Anal. Chem. (1)

J.-B. Sirven, B. Bousquet, L. Canioni, and L. Sarger, “Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods,” Anal. Chem. 78, 1462–1469 (2006).
[CrossRef]

Appl. Geochem. (2)

R. S. Harmon, F. C. DeLucia, C. E. McManus, N. J. McMillan, R. F. Jenkins, M. E. Walsh, and A. Miziolek, “Laser-induced breakdown spectroscopy: an emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications,” Appl. Geochem. 21, 730–747 (2006).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. De Lucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Bull. Kans. Geol. Sur. (1)

D. E. Zeller, “The stratigraphic succession in Kansas,” Bull. Kans. Geol. Sur. 189, 81 (1968).

Chem. Geol. (3)

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

M. D. Dyar, M. L. Carmosino, J. M. Tucker, E. A. Brown, S. M. Clegg, R. C. Wiens, J. E. Barefield, J. S. Delaney, G. M. Ashley, and S. G. Driese, “Remote laser-induced breakdown spectroscopy analysis of East African Rift sedimentary samples under Mars conditions,” Chem. Geol., doi:10.10163/j.chemgeo.2011.11.019 (2011).
[CrossRef]

D. Derome, M. Cathelineau, C. Fabre, M.-C. Boiron, D. Banks, T. Lhomme, and M. Cuney, “Paleo-fluid composition determined from individual fluid inclusions by Raman and LIBS: applications to mid-Proterozoic evaporitic Na-Ca brines (Alligator Rivers Uranium Field, Northern Territories Australia),” Chem. Geol. 237, 240–254 (2007).
[CrossRef]

Chemom. Intell. Lab. Syst. (1)

S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemom. Intell. Lab. Syst. 58, 109–130 (2001).
[CrossRef]

Econ. Geol. (1)

D. Derome, M. Cathelineau, M. Cuney, C. Fabre, and T. Lhomme, “Mixing of sodic and calcic brines and uranium deposition at McArthur River, Saskatchewan, Canada: a Raman and laser-induced breakdown spectroscopic study of fluid inclusions,” Econ. Geol. 100, 1529–1545 (2005).

Geochim. Cosmochim. Acta (2)

C. Fabre, M. C. Coiron, J. Dubessey, A. Chabiron, B. Charoy, and T. M. Crespo, “Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy: an exploratory study,” Geochim. Cosmochim. Acta 66, 1401–1407 (2002).
[CrossRef]

M. Dell’Aglio, A. De Giocomo, R. Gauduiso, O. De Pascale, G. S. Senesi, and S. Longo, “Laser induced breakdown spectroscopy applications to meteorites: chemical analysis and composition profiles,” Geochim. Cosmochim. Acta 74, 7329–7339 (2010).
[CrossRef]

J. Anal. At. Spectrom. (3)

J.-B. Sirven, B. Sallé, P. Mauchien, J.-L. Lacour, S. Maurice, and G. Manhès, “Feasibility study of rock identification at the surface of Mars by remote laser-induced breakdown spectroscopy and three chemometric methods,” J. Anal. At. Spectrom. 22, 1471–1480 (2007).
[CrossRef]

F. R. Doucet, G. Lithgow, R. Kosierb, P. Bouchard, and M. Sabsabi, “Determination of isotope ratios using laser-induced breakdown spectroscopy in ambient air at atmospheric pressure for nuclear forensics,” J. Anal. At. Spectrom. 26, 536–541 (2011).
[CrossRef]

I. B. Gornushkin, A. Ruíz-Medina, J. M. Anzano, B. W. Smith, and J. D. Winefordner, “Identification of particulate materials by correlation analysis using a microscopy laser induced breakdown spectrometer,” J. Anal. At. Spectrom. 15, 581–586(2000).
[CrossRef]

J. Geophys. Res. (1)

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom, and S. M. Clegg, “Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites,” J. Geophys. Res. 111, doi:10.1029/2005JE002578 (2006).
[CrossRef]

J. Pyrotech. (1)

K. L. Maxwell and M. K. Hudson, “Spectral study of metallic molecular bands in hybrid rocket plumes,” J. Pyrotech. 21, 59–69 (2005).

Pattern Recogn. (1)

S. Wold, “Pattern recognition by means of disjoint principal components models,” Pattern Recogn. 8, 127–139(1976).
[CrossRef]

Planet. Space Sci. (1)

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Soil Sci. Soc. Am. J. (1)

M. Z. Martin, N. Labbé, N. André, S. D. Wullschleger, R. D. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Spectrochim. Acta B (13)

M. D. Dyar, J. M. Tucker, S. Humphries, S. M. Clegg, R. C. Wiens, and M. D. Lane, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta B 66, 39–56 (2011).
[CrossRef]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element and mineralogical analysis of mineral ores using laser-induced breakdown spectroscopy and chemometric analysis,” Spectrochim. Acta B 63, 763–769 (2008).
[CrossRef]

D. L. Death, A. P. Cunningham, and L. J. Pollard, “Multi-element analysis of iron ore pellets by laser-induced breakdown spectroscopy and principal components regression,” Spectrochim. Acta B 64, 1048–1058 (2009).
[CrossRef]

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, “Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques,” Spectrochim. Acta B 64, 79–88 (2009).
[CrossRef]

B. Sallé, D. A. Cremers, S. Maurice, R. C. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative student of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

A. De Giacomo, M. Del’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, Novotný, M. Liśka, V. Kanický, and V. Otruba, “Mapping of different structures on a large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta B 63, 1139–1144 (2008).
[CrossRef]

R. Barbini, F. Colao, V. Lazic, R. Fantoni, A. Paluci, and M. Angelone, “On board LIBS analysis of marine sediments collected during the XVI Italian campaign in Antarctica,” Spectrochim. Acta B 57, 1203–1218 (2002).
[CrossRef]

J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Multivariate analysis of laser-induced breakdown spectroscopy chemical signature for geomaterial classification,” Spectrochim. Acta B 64, 1009–1019 (2009).
[CrossRef]

N. J. McMillan, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of minerals: carbonate and silicates,” Spectrochim. Acta B 62, 1528–1536 (2007).
[CrossRef]

C. A. Smith, M. A. Martine, D. K. Veirs, and D. A. Cremers, “Pu-239/Pu-240 isotope ratios determined using high resolution emission spectroscopy in a laser-induced plasma,” Spectrochim. Acta B 57, 929–937 (2002).
[CrossRef]

R. E. Russo, A. A. Bol’shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi, “Laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B 66, 99–104 (2011).
[CrossRef]

Other (2)

K. A. Yetter, “Determining provenance of corundum using laser-induced breakdown spectroscopy (LIBS) and chemometric analysis,” M. S. thesis (New Mexico State University, 2011).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Locations of the three quarries sampled in this study with the stratigraphic column showing their relative ages [33].

Fig. 2.
Fig. 2.

Schematic diagram of the LIBS system used in this study.

Fig. 3.
Fig. 3.

Multivariate regression diagrams that illustrate the PLS-1 modeling technique. (A) PC score plot resulting from the model 1 PLS-1 regression. Spring Hill 14 bed samples are clearly distinct from all other beds. The five open symbols in the circled group are bed Stoner 4, which is also distinct from all other beds. (B) Prediction plot for the model 1 regression. The assigned value, 1 for Spring Hill 14 and 0 for all other beds, is plotted against the value calculated for all of the samples used in the regression. The value of apparent distinction (VAD) could be placed at any value between the two groups of data, as shown by the arrow. (C) Prediction plot for the second half of the data used in the model 1 prediction. Spring Hill 14 samples all have predicted values greater than the VAD (0.5); all other beds have predicted values lower than the VAD. The model is 100% successful.

Fig. 4.
Fig. 4.

Averaged LIBS spectra for the 16 limestone beds in this study. Prominent lines for dominant elements are marked with closed circles at the top of the diagram. Broad molecular bands at 540 to 560 nm and 580 to 650 nm are emissions from CaO and CaOH molecules, respectively [24].

Fig. 5.
Fig. 5.

PCA score plot for all averaged spectra for the 16 limestone beds in this study. Most of the beds are very similar in composition, as seen by the cluster of points in the lower half of the diagram. Beds Spring Hill 14 and Stoner 4, circled, have unique compositions.

Fig. 6.
Fig. 6.

Results of PLS-1 calibration for the 16 limestone beds in this study. Each bed is assigned an integer response variable (abscissa); the calculated values for the calibration samples are plotted along the ordinate. The calculated values overlap extensively, making this model invalid.

Fig. 7.
Fig. 7.

Matching algorithm for limestone bed correlation, after [34].

Fig. 8.
Fig. 8.

Regression models used in the matching algorithm. For each model, the PLS-1 PC score plot on the left shows the compositional range of the one bed (solid circles) compared to that of all other beds (open triangles). The prediction plot on the right shows the predicted values for the samples used to create the model and the VAD. The first VAD (solid line) listed is 0.5, the default value in the models. The alternative VAD (dotted line) is an adjusted value that produces the highest success for the test-set validation. Only models that use an alternative VAD are shown; all others are similar to model 1 in Fig. 3.

Fig. 9.
Fig. 9.

Prediction plots for the five models in the matching algorithm that use an alternative VAD. All other prediction plots are similar to model 1 in Fig. 3. Symbols are as in Fig. 8.

Tables (3)

Tables Icon

Table 1. Limestone Beds Examined in This Study

Tables Icon

Table 2. Results of SIMCA Classificationa

Tables Icon

Table 3. Success Rates for the Matching Algorithm

Metrics