Abstract

Laser-ablated brass plasma plumes expanding in various air pressures have been studied using optical emission spectroscopy and two-dimensional imaging. The velocity of the plume front calculated from the Rt plot decreases from 1.9×104m/s to 5.5×103m/s as the pressure increases from 0.01 to 105Pa. The estimated higher electron temperature for Cu I (510.5 nm) transition than for Zn I (481.1 nm) may be due to differences in the heat of vaporization and vaporization temperature of copper and zinc. The electron density estimated using the Stark-broadened transition 4pP3/224s2D25/2 of Cu I (510.5 nm) is about 10 times higher than that for transition 4s5sS134s4pP23 of Zn I (481.1 nm). The appearance and enhancement of the Cu2 (A–X) band at lower ambient pressure and formation of nanoparticle clusters have been extensively discussed. Stoichiometric and morphological study of the deposited nanoparticles on carbon tape at different ambient pressure reveals a different percentage composition of copper and of nanoparticles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
    [CrossRef]
  2. J. F. Ready, LIA Handbook of Laser Material Processing (Laser Institute of America, 2001).
  3. B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
    [CrossRef]
  4. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  5. P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and a magnetic field,” Phys. Plasmas 18, 033505 (2011).
    [CrossRef]
  6. L. J. Radziemski, “From LASER to LIBS, the path of technological development,” Spectrochim. Acta B 57, 1109–1113 (2002).
    [CrossRef]
  7. P. K. Pandey and R. K. Thareja, “Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field,” J. Appl. Phys. 109, 074901 (2011).
    [CrossRef]
  8. D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).
  9. B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metal irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007).
    [CrossRef]
  10. C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415 (2005).
    [CrossRef]
  11. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
    [CrossRef]
  12. L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys. A 76, 339–350 (2003).
    [CrossRef]
  13. E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
    [CrossRef]
  14. S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated materials,” Appl. Surf. Sci. 222, 293–306 (2004).
    [CrossRef]
  15. J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
    [CrossRef]
  16. J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
    [CrossRef]
  17. H.-R. Kuhn and D. Gunther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectroscopy on laser induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
    [CrossRef]
  18. J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
    [CrossRef]
  19. V. Margetic, K. Niemax, and R. Hergenröder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2001).
    [CrossRef]
  20. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
    [CrossRef]
  21. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
    [CrossRef]
  22. A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68–75 (2005).
    [CrossRef]
  23. J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Lines (U. S. National Bureau of Standards, 1980).
  24. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).
  25. W. Lochte-Holtgreven, Plasma Diagnostics (North-Holland, 1968).
  26. M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003).
    [CrossRef]
  27. G. Bekefi, Principles of Laser Plasmas (Wiley Interscience, 1976).
  28. M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999).
    [CrossRef]
  29. E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).
  30. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  31. M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004).
    [CrossRef]
  32. Y.-I. Lee, S. P. Sawan, T. L. Thiem, Y.-Y. Teng, and J. Sneddon, “Interaction of laser beam with metals. Part II: space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
    [CrossRef]
  33. A. D. Sappy and T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atom and Cu2 in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107(1992).
    [CrossRef]
  34. G. A. Ozin and S. A. Mitchell, “Fluorescence spectroscopy and photoprocesses of copper, Cu and Cu2 in rare gas matrixes,” J. Phys. Chem. 86, 473–479 (1982).
    [CrossRef]

2011 (2)

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and a magnetic field,” Phys. Plasmas 18, 033505 (2011).
[CrossRef]

P. K. Pandey and R. K. Thareja, “Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field,” J. Appl. Phys. 109, 074901 (2011).
[CrossRef]

2010 (1)

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[CrossRef]

2007 (3)

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[CrossRef]

B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metal irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007).
[CrossRef]

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
[CrossRef]

2005 (4)

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415 (2005).
[CrossRef]

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[CrossRef]

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68–75 (2005).
[CrossRef]

2004 (3)

J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[CrossRef]

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated materials,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004).
[CrossRef]

2003 (5)

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

H.-R. Kuhn and D. Gunther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectroscopy on laser induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[CrossRef]

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003).
[CrossRef]

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys. A 76, 339–350 (2003).
[CrossRef]

2002 (1)

L. J. Radziemski, “From LASER to LIBS, the path of technological development,” Spectrochim. Acta B 57, 1109–1113 (2002).
[CrossRef]

2001 (1)

V. Margetic, K. Niemax, and R. Hergenröder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2001).
[CrossRef]

2000 (1)

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

1999 (1)

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999).
[CrossRef]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

1992 (2)

Y.-I. Lee, S. P. Sawan, T. L. Thiem, Y.-Y. Teng, and J. Sneddon, “Interaction of laser beam with metals. Part II: space-resolved studies of laser-ablated plasma emission,” Appl. Spectrosc. 46, 436–441 (1992).
[CrossRef]

A. D. Sappy and T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atom and Cu2 in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107(1992).
[CrossRef]

1982 (1)

G. A. Ozin and S. A. Mitchell, “Fluorescence spectroscopy and photoprocesses of copper, Cu and Cu2 in rare gas matrixes,” J. Phys. Chem. 86, 473–479 (1982).
[CrossRef]

Alloncle, P.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[CrossRef]

Babina, E. M.

E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Bauerle, D.

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

Bekefi, G.

G. Bekefi, Principles of Laser Plasmas (Wiley Interscience, 1976).

Benzerga, R.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Bolshov, M.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Boulmer-Leborgne, C.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[CrossRef]

Capitelli, M.

M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004).
[CrossRef]

Casawola, A.

M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004).
[CrossRef]

Cheng, C.

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415 (2005).
[CrossRef]

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Chimier, B.

B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metal irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007).
[CrossRef]

Chrisey, D. B.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

Colonna, G.

M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004).
[CrossRef]

Corliss, C. H.

J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Lines (U. S. National Bureau of Standards, 1980).

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

De Giacomo, A.

M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004).
[CrossRef]

Devies, B. Luther

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

Dimitrijevic, M. S.

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999).
[CrossRef]

Duering, M.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

Elaksher, F. F.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003).
[CrossRef]

Franklin, S. R.

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated materials,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

Gaerris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Gamal, Y. E.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

Gamble, T. K.

A. D. Sappy and T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atom and Cu2 in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107(1992).
[CrossRef]

Greif, R.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[CrossRef]

Griem, H. R.

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

Gunther, D.

H.-R. Kuhn and D. Gunther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectroscopy on laser induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[CrossRef]

Hafez, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003).
[CrossRef]

Hallo, L.

B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metal irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007).
[CrossRef]

Harilal, S. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Hergenröder, R.

J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[CrossRef]

V. Margetic, K. Niemax, and R. Hergenröder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2001).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Hermann, J.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[CrossRef]

Hubler, G. K.

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

Il’in, G. G.

E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Itina, T. E.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
[CrossRef]

Khedr, M. A.

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003).
[CrossRef]

Khishchenko, K. V.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
[CrossRef]

Koch, J.

J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[CrossRef]

Kolev, V. Z.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

Konovalova, O. A.

E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Kuhn, H.-R.

H.-R. Kuhn and D. Gunther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectroscopy on laser induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[CrossRef]

Lee, Y.-I.

Levashov, P. R.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
[CrossRef]

Liu, C.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[CrossRef]

Lochte-Holtgreven, W.

W. Lochte-Holtgreven, Plasma Diagnostics (North-Holland, 1968).

Madsen, N. R.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

Mao, S. S.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[CrossRef]

Mao, X.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[CrossRef]

Margetic, V.

V. Margetic, K. Niemax, and R. Hergenröder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2001).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Martin, G. A.

J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Lines (U. S. National Bureau of Standards, 1980).

Mercadier, L.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[CrossRef]

Mitchell, S. A.

G. A. Ozin and S. A. Mitchell, “Fluorescence spectroscopy and photoprocesses of copper, Cu and Cu2 in rare gas matrixes,” J. Phys. Chem. 86, 473–479 (1982).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Mothe, E.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[CrossRef]

Najmabadi, F.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Niemax, K.

J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[CrossRef]

V. Margetic, K. Niemax, and R. Hergenröder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2001).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Ozin, G. A.

G. A. Ozin and S. A. Mitchell, “Fluorescence spectroscopy and photoprocesses of copper, Cu and Cu2 in rare gas matrixes,” J. Phys. Chem. 86, 473–479 (1982).
[CrossRef]

Pakulev, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Pandey, P. K.

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and a magnetic field,” Phys. Plasmas 18, 033505 (2011).
[CrossRef]

P. K. Pandey and R. K. Thareja, “Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field,” J. Appl. Phys. 109, 074901 (2011).
[CrossRef]

Perriere, J.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[CrossRef]

Povarnitsyn, M. E.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
[CrossRef]

Radziemski, L. J.

L. J. Radziemski, “From LASER to LIBS, the path of technological development,” Spectrochim. Acta B 57, 1109–1113 (2002).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Reader, J.

J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Lines (U. S. National Bureau of Standards, 1980).

Ready, J. F.

J. F. Ready, LIA Handbook of Laser Material Processing (Laser Institute of America, 2001).

Rode, A. V.

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

Russo, R. E.

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[CrossRef]

Sahal-Brechot, S.

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999).
[CrossRef]

Salakhov, M. K.

E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Sappy, A. D.

A. D. Sappy and T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atom and Cu2 in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107(1992).
[CrossRef]

Sarandaev, E. V.

E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

Sawan, S. P.

Sentis, M.

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
[CrossRef]

Sharma, A. K.

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68–75 (2005).
[CrossRef]

Sneddon, J.

Socol, G.

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[CrossRef]

Stockhaus, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Teng, Y.-Y.

Thareja, R. K.

P. K. Pandey and R. K. Thareja, “Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field,” J. Appl. Phys. 109, 074901 (2011).
[CrossRef]

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and a magnetic field,” Phys. Plasmas 18, 033505 (2011).
[CrossRef]

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68–75 (2005).
[CrossRef]

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated materials,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

Thiem, T. L.

Tikhonchuk, V. T.

B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metal irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007).
[CrossRef]

Tillack, M. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

Tricot, S.

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[CrossRef]

Tunnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

von Bohlen, A.

J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[CrossRef]

Wiese, W. L.

J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Lines (U. S. National Bureau of Standards, 1980).

Xu, X.

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415 (2005).
[CrossRef]

Zhigilei, L. V.

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys. A 76, 339–350 (2003).
[CrossRef]

Anal. Chem. (2)

C. Liu, X. Mao, S. S. Mao, R. Greif, and R. E. Russo, “Particle size dependent chemistry for laser ablation of brass,” Anal. Chem. 77, 6687–6691 (2005).
[CrossRef]

H.-R. Kuhn and D. Gunther, “Elemental fractionation studies in laser ablation inductively coupled plasma mass spectroscopy on laser induced brass aerosols,” Anal. Chem. 75, 747–753 (2003).
[CrossRef]

Appl. Phys. A (2)

L. V. Zhigilei, “Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation,” Appl. Phys. A 76, 339–350 (2003).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Surf. Sci. (2)

S. R. Franklin and R. K. Thareja, “Simplified model to account for dependence of ablation parameters on temperature and phase of the ablated materials,” Appl. Surf. Sci. 222, 293–306 (2004).
[CrossRef]

A. K. Sharma and R. K. Thareja, “Plume dynamics of laser-produced aluminum plasma in ambient nitrogen,” Appl. Surf. Sci. 243, 68–75 (2005).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140, 193–196 (1999).
[CrossRef]

Bull. Obs. Astron. Belgrade (1)

E. M. Babina, G. G. Il’in, O. A. Konovalova, M. K. Salakhov, and E. V. Sarandaev, “The complete calculation of Stark broadening parameters for the neutral copper atoms spectral lines of 4sS2‒4pP02 and 4sD2‒4pP02 multiplets in the dipole approximation,” Bull. Obs. Astron. Belgrade 76, 163–166 (2003).

J. Anal. At. Spectrom. (1)

J. Koch, A. von Bohlen, R. Hergenröder, and K. Niemax, “Particle size distributions and compositions of aerosols produced by near IR femto- and nanosecond laser ablation of brass,” J. Anal. At. Spectrom. 19, 267–272 (2004).
[CrossRef]

J. Appl. Phys. (3)

P. K. Pandey and R. K. Thareja, “Plume dynamics and cluster formation in laser-ablated copper plasma in a magnetic field,” J. Appl. Phys. 109, 074901 (2011).
[CrossRef]

A. D. Sappy and T. K. Gamble, “Planar laser-induced fluorescence imaging of Cu atom and Cu2 in a condensing laser-ablated copper plasma plume,” J. Appl. Phys. 72, 5095–5107(1992).
[CrossRef]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaerris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[CrossRef]

J. Phys. Chem. (1)

G. A. Ozin and S. A. Mitchell, “Fluorescence spectroscopy and photoprocesses of copper, Cu and Cu2 in rare gas matrixes,” J. Phys. Chem. 86, 473–479 (1982).
[CrossRef]

J. Phys. D (1)

J. Perriere, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, “Nanoparticle formation by femtosecond laser ablation,” J. Phys. D 40, 7069–7076 (2007).
[CrossRef]

Phys. Plasmas (1)

P. K. Pandey and R. K. Thareja, “Surface nanostructuring of laser ablated copper in ambient gas atmosphere and a magnetic field,” Phys. Plasmas 18, 033505 (2011).
[CrossRef]

Phys. Rev. B (4)

E. G. Gamaly, N. R. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther Devies, “Ablation of metals with picosecond laser pulses: evidence of long lived non equilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[CrossRef]

B. Chimier, V. T. Tikhonchuk, and L. Hallo, “Heating model for metal irradiated by a subpicosecond laser pulse,” Phys. Rev. B 75, 195124 (2007).
[CrossRef]

C. Cheng and X. Xu, “Mechanisms of decomposition of metal during femtosecond laser ablation,” Phys. Rev. B 72, 165415 (2005).
[CrossRef]

M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75, 235414 (2007).
[CrossRef]

Plasma Sources Sci. Technol. (1)

M. A. Hafez, M. A. Khedr, F. F. Elaksher, and Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185–198 (2003).
[CrossRef]

Spectrochim. Acta B (5)

M. Capitelli, A. Casawola, G. Colonna, and A. De Giacomo, “Laser-induced plasma expansion: theoretical and experimental aspects,” Spectrochim. Acta B 59, 271–289 (2004).
[CrossRef]

J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, “On the stoichiometry of mass transfer from solid to plasma during pulsed laser ablation of brass,” Spectrochim. Acta B 65, 636–641 (2010).
[CrossRef]

V. Margetic, K. Niemax, and R. Hergenröder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2001).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, and R. Hergenröder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

L. J. Radziemski, “From LASER to LIBS, the path of technological development,” Spectrochim. Acta B 57, 1109–1113 (2002).
[CrossRef]

Other (8)

D. Bauerle, Laser Processing and Chemistry (Springer-Verlag, 2000).

D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, 1994).

J. F. Ready, LIA Handbook of Laser Material Processing (Laser Institute of America, 2001).

J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Lines (U. S. National Bureau of Standards, 1980).

H. R. Griem, Plasma Spectroscopy (McGraw-Hill, 1964).

W. Lochte-Holtgreven, Plasma Diagnostics (North-Holland, 1968).

G. Bekefi, Principles of Laser Plasmas (Wiley Interscience, 1976).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Time evolution of brass plasma plume images at different air pressures.

Fig. 3.
Fig. 3.

Rt plot of plasma plume images at different pressures.

Fig. 4.
Fig. 4.

Emission lines from the laser-induced brass plasma using 266 nm laser at 24J/cm2 energy density covering the range from 330 to 650 nm.

Fig. 5.
Fig. 5.

Time evolution of the Zn I lines at 472.2 and 481.1 nm at different air pressures: (a) at atmospheric pressure, (b) at 101 mbar, and (c) at 104 mbar. (d) Intensity variation of Zn I (481.1 nm) as a function of time at different air pressures and at 1 mm from the target surface.

Fig. 6.
Fig. 6.

Time evolution of the Cu I lines at 510.5, 515.3, and 521.8 nm at different air pressures: (a) at atmospheric pressure, (b) at 101 mbar, and (c) at 104 mbar. (d) Intensity variation of Cu I (510.5 nm) as a function of time at different air pressures and at 1 mm from the surface of the target.

Fig. 7.
Fig. 7.

Cu I and Zn I emission zones in the plasma plume.

Fig. 8.
Fig. 8.

Temporal evolution of electron density at different air pressures (a) corresponding to Cu I at 510.5 nm and (b) corresponding to Zn I at 481.1 nm.

Fig. 9.
Fig. 9.

Emission of Cu2 (A–X) bands at 5 mm away from the target surface after 150 ns delay with respect to ablating laser pulse at (a) 104 and (b) 101 mbar.

Fig. 10.
Fig. 10.

Time evolution of Cu2 (A–X) bands at 5 mm away from the target surface at 101 mbar pressure peaking at (a) 390.0, (b) 426.0, and (c) 435.3 nm at 104 mbar. (d) Intensity variation of the bands as a function of time at 5 mm away from the target surface.

Fig. 11.
Fig. 11.

(a) Time evolution of Cu2 (A–X) band at 435.3 nm at various distances. (b) Velocity of Cu2 molecules as a function of distance.

Fig. 12.
Fig. 12.

Nanoparticles of brass at different pressures.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ln(IkiλgkAki)=1kBTeEj+ln(hcne4πU(Te)),
Δλ1/2(nm)=2W[ne1016]+3.5Ai(ne1016)1/4×(11.2ND1/3)W(ne1016).
ND=1.72×109[Te(eV)]3/2[ne(cm3)]1/2cm3.
Δλ1/2(nm)=2W[ne1016].
Cu+Cu+NCu2+N,
Cu2+NCu2+N.

Metrics