Abstract

Characteristics of the plasma light source of microwave (MW) plus laser-induced breakdown spectroscopy (LIBS) or spark-induced breakdown spectroscopy (SIBS) were studied. The plasma was initially generated by laser- or spark-induced breakdown as a plasma seed. A plasma volume was then grown and sustained by MWs in air. This MW plasma had a long lifetime, large volume, strong emission intensity, and high stability with time. These characteristics are suitable for applications in the molecular analysis of gases such as OH or N2. Because the plasma properties did not depend on laser or spark plasma seeds, the resulting plasma was easily controllable by the input power and duration of the MWs. Therefore, a significant improvement was achieved in the spectral intensity and signal-to-noise ratio. For example, the peak intensity of the Pb spectra of LIBS increased 15 times, and that of SIBS increased 880 times without increases in their background noise. A MW-enhanced plasma light source could be used to make the total system smaller and cheaper than a conventional LIBS system, which would be useful for real-time and in situ analysis of gas molecules in, for example, food processing, medical applications, chemical exposure, and gas turbine or automobile air-to-fuel ratio and exhaust gas measurement.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. C. Broekaert, Analytical Atomic Spectrometry with Flames and Plasmas, 2nd ed. (Wiley-VCH, 2005).
  2. M. Cullen, Atomic Spectroscopy in Elemental Analysis (CRC Press, 2004).
  3. V. Sturm and R. Noll, “Laser-induced breakdown spectroscopy of gas mixtures of air, CO2, N2, and C3H8 for simultaneous C, H, O, and N measurement,” Appl. Opt. 42, 6221–6225 (2003).
    [CrossRef]
  4. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  5. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).
  6. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).
  7. R. H. Scott and A. Strasheim, “Laser-induced plasmas for analytical spectroscopy,” Spectrochim. Acta B 25, 311–332 (1970).
  8. R. S. Adrain and J. Watson, “Laser microspectral analysis: a review of principles and applications,” J. Appl. Phys. 17, 1915–1940 (1984).
  9. D. A. Cremers and L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, and J. A. Paisner, eds. (Marcel Dekker, 1987), pp. 351–415.
  10. L. J. Radziemski and D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 303–325.
  11. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).
  12. L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).
  13. Y.-I. Lee, K. Song, and J. Sneddon, “Laser induced plasmas for analytical atomic spectroscopy,” in Lasers in Analytical Atomic Spectroscopy, J. Sneddon, T. L. Thiem, and Y.-I. Lee, eds. (VCH, 1997), 197–235.
  14. D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  15. E. Tognoni, V. Palleschi, M. Corsi, and G. Christoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).
  16. W. B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
    [CrossRef]
  17. D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  18. J. Uebbing, J. Brust, W. Sdorra, F. Leis, and K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
    [CrossRef]
  19. V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).
  20. J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
    [CrossRef]
  21. A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, “Titanium plasma spectroscopy studies under double pulse laser excitation,” Laser Phys. 19, 1981–1992 (2009).
    [CrossRef]
  22. M. Weidman, S. Palanco, M. Baudelet, and M. C. Richardson, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas,” Spectrochim. Acta B 64, 961–967 (2009).
  23. M. E. Asgill, M. S. Brown, K. Frische, W. M. Roquemore, and D. W. Hahn, “Double-pulse and single-pulse laser-induced breakdown spectroscopy for distinguishing between gaseous and particulate phase analytes,” Appl. Opt. 49, C110–C119 (2010).
    [CrossRef]
  24. W. Zhou, K. Li, Q. Shen, Q. Chen, and J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18, 2573–2578 (2010).
    [CrossRef]
  25. M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18, 259–266 (2010).
    [CrossRef]
  26. R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).
  27. A. J. R. Hunter, S. J. Davis, L. G. Piper, K. W. Holtzclaw, and M. E. Fraser, “Spark-induced breakdown spectroscopy: a new technique for monitoring heavy metals,” Appl. Spectrosc. 54, 575–582 (2000).
    [CrossRef]
  28. A. J. R. Hunter, R. T. Wainner, L. G. Piper, and S. J. Davis, “Rapid field screening of soils for heavy metals with spark-induced breakdown spectroscopy,” Appl. Opt. 42, 2102–2109 (2003).
    [CrossRef]
  29. N. Taefi, M. Khalaji, and S. H. Tavassoli, “Determination of elemental composition of cement powder by spark induced breakdown spectroscopy,” Cem. Concr. Res. 40, 1114–1119 (2010).
  30. C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
    [CrossRef]
  31. Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark-induced breakdown spectroscopy,” Appl. Opt. 49, C95–C100 (2010).
    [CrossRef]
  32. Y. Ikeda, A. Moon, and R. Tsuruoka, “New break down plasma source by solid-state microwave,” presented at the 3rd North American Symposium on Laser-Induced Breakdown Spectroscopy, Clearwater Beach, Florida, USA, 2011.
  33. N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.
  34. Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/airand C3H8/air laminar flames by laser-induced breakdown spectroscopy,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-965.
  35. B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photon. 2, 537–540 (2008).
    [CrossRef]
  36. Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25, 1316–1323 (2010).
    [CrossRef]
  37. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Application, Vol. 1 (Plenum, 1994).
  38. F. J. Gordillo-Vázquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
    [CrossRef]
  39. H. Ando, Y. Sakai, and K. Kuwahara, “Universal rule of hydrocarbon oxidation,” SAE Technical Paper 2009-01-0948 (SAE International, 2009).
  40. Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine,” SAE Technical Paper 2009-01-1049 (SAE International, 2009).

2010

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

N. Taefi, M. Khalaji, and S. H. Tavassoli, “Determination of elemental composition of cement powder by spark induced breakdown spectroscopy,” Cem. Concr. Res. 40, 1114–1119 (2010).

C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
[CrossRef]

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25, 1316–1323 (2010).
[CrossRef]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18, 259–266 (2010).
[CrossRef]

W. Zhou, K. Li, Q. Shen, Q. Chen, and J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18, 2573–2578 (2010).
[CrossRef]

M. E. Asgill, M. S. Brown, K. Frische, W. M. Roquemore, and D. W. Hahn, “Double-pulse and single-pulse laser-induced breakdown spectroscopy for distinguishing between gaseous and particulate phase analytes,” Appl. Opt. 49, C110–C119 (2010).
[CrossRef]

Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark-induced breakdown spectroscopy,” Appl. Opt. 49, C95–C100 (2010).
[CrossRef]

2009

A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, “Titanium plasma spectroscopy studies under double pulse laser excitation,” Laser Phys. 19, 1981–1992 (2009).
[CrossRef]

M. Weidman, S. Palanco, M. Baudelet, and M. C. Richardson, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas,” Spectrochim. Acta B 64, 961–967 (2009).

2008

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photon. 2, 537–540 (2008).
[CrossRef]

2006

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef]

2005

F. J. Gordillo-Vázquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

2004

W. B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

2003

2002

E. Tognoni, V. Palleschi, M. Corsi, and G. Christoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

2000

1997

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

1994

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).

1991

1984

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

R. S. Adrain and J. Watson, “Laser microspectral analysis: a review of principles and applications,” J. Appl. Phys. 17, 1915–1940 (1984).

1970

R. H. Scott and A. Strasheim, “Laser-induced plasmas for analytical spectroscopy,” Spectrochim. Acta B 25, 311–332 (1970).

Adrain, R. S.

R. S. Adrain and J. Watson, “Laser microspectral analysis: a review of principles and applications,” J. Appl. Phys. 17, 1915–1940 (1984).

Afonso, C. N.

F. J. Gordillo-Vázquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Ando, H.

H. Ando, Y. Sakai, and K. Kuwahara, “Universal rule of hydrocarbon oxidation,” SAE Technical Paper 2009-01-0948 (SAE International, 2009).

Angel, S. M.

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef]

Asgill, M. E.

Babushok, V. I.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).

Balachandran, R.

C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
[CrossRef]

Baudelet, M.

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25, 1316–1323 (2010).
[CrossRef]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18, 259–266 (2010).
[CrossRef]

M. Weidman, S. Palanco, M. Baudelet, and M. C. Richardson, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas,” Spectrochim. Acta B 64, 961–967 (2009).

Boulos, M. I.

M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Application, Vol. 1 (Plenum, 1994).

Broekaert, J. A. C.

J. A. C. Broekaert, Analytical Atomic Spectrometry with Flames and Plasmas, 2nd ed. (Wiley-VCH, 2005).

Brown, M. S.

Brust, J.

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Chen, Q.

Christoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, and G. Christoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, and G. Christoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

Couris, S.

C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
[CrossRef]

Cremers, D. A.

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef]

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

L. J. Radziemski and D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 303–325.

D. A. Cremers and L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, and J. A. Paisner, eds. (Marcel Dekker, 1987), pp. 351–415.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cullen, M.

M. Cullen, Atomic Spectroscopy in Elemental Analysis (CRC Press, 2004).

Dagdigian, P. J.

Davis, S. J.

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).

Fauchais, P.

M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Application, Vol. 1 (Plenum, 1994).

Fraser, M. E.

Frische, K.

Gondal, M. A.

A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, “Titanium plasma spectroscopy studies under double pulse laser excitation,” Laser Phys. 19, 1981–1992 (2009).
[CrossRef]

Gordillo-Vázquez, F. J.

F. J. Gordillo-Vázquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Gottfried, J. L.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).

Hahn, D. W.

Heitz, J.

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

Holtzclaw, K. W.

Hunter, A. J. R.

Ikeda, Y.

Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark-induced breakdown spectroscopy,” Appl. Opt. 49, C95–C100 (2010).
[CrossRef]

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine,” SAE Technical Paper 2009-01-1049 (SAE International, 2009).

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/airand C3H8/air laminar flames by laser-induced breakdown spectroscopy,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-965.

Y. Ikeda, A. Moon, and R. Tsuruoka, “New break down plasma source by solid-state microwave,” presented at the 3rd North American Symposium on Laser-Induced Breakdown Spectroscopy, Clearwater Beach, Florida, USA, 2011.

Jeong, H.

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine,” SAE Technical Paper 2009-01-1049 (SAE International, 2009).

Johnson, L.

A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, “Titanium plasma spectroscopy studies under double pulse laser excitation,” Laser Phys. 19, 1981–1992 (2009).
[CrossRef]

Kaneko, M.

Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark-induced breakdown spectroscopy,” Appl. Opt. 49, C95–C100 (2010).
[CrossRef]

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine,” SAE Technical Paper 2009-01-1049 (SAE International, 2009).

Katano, H.

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine,” SAE Technical Paper 2009-01-1049 (SAE International, 2009).

Kawahara, N.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/airand C3H8/air laminar flames by laser-induced breakdown spectroscopy,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-965.

Kearton, B.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photon. 2, 537–540 (2008).
[CrossRef]

Khalaji, M.

N. Taefi, M. Khalaji, and S. H. Tavassoli, “Determination of elemental composition of cement powder by spark induced breakdown spectroscopy,” Cem. Concr. Res. 40, 1114–1119 (2010).

Khalil, A. A. I.

A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, “Titanium plasma spectroscopy studies under double pulse laser excitation,” Laser Phys. 19, 1981–1992 (2009).
[CrossRef]

Kuwahara, K.

H. Ando, Y. Sakai, and K. Kuwahara, “Universal rule of hydrocarbon oxidation,” SAE Technical Paper 2009-01-0948 (SAE International, 2009).

Lee, W. B.

W. B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Lee, Y.-I.

W. B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Y.-I. Lee, K. Song, and J. Sneddon, “Laser induced plasmas for analytical atomic spectroscopy,” in Lasers in Analytical Atomic Spectroscopy, J. Sneddon, T. L. Thiem, and Y.-I. Lee, eds. (VCH, 1997), 197–235.

Leis, F.

Letty, C.

C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
[CrossRef]

Li, K.

Linsmeyer, T.

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

Liu, Y.

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25, 1316–1323 (2010).
[CrossRef]

Long, J.

Loree, T. R.

Mastorakos, E.

C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
[CrossRef]

Mattley, Y.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photon. 2, 537–540 (2008).
[CrossRef]

McKiernan, A. P.

F. J. Gordillo-Vázquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Miziolek, A. W.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

Moon, A.

Y. Ikeda, A. Moon, and M. Kaneko, “Development of microwave-enhanced spark-induced breakdown spectroscopy,” Appl. Opt. 49, C95–C100 (2010).
[CrossRef]

Y. Ikeda, A. Moon, and R. Tsuruoka, “New break down plasma source by solid-state microwave,” presented at the 3rd North American Symposium on Laser-Induced Breakdown Spectroscopy, Clearwater Beach, Florida, USA, 2011.

Munson, C. A.

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).

Nakayama, T.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/airand C3H8/air laminar flames by laser-induced breakdown spectroscopy,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-965.

Niemax, K.

Nishiyama, A.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/airand C3H8/air laminar flames by laser-induced breakdown spectroscopy,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-965.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine,” SAE Technical Paper 2009-01-1049 (SAE International, 2009).

Noll, R.

Palanco, S.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18, 259–266 (2010).
[CrossRef]

M. Weidman, S. Palanco, M. Baudelet, and M. C. Richardson, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas,” Spectrochim. Acta B 64, 961–967 (2009).

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, and G. Christoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

Pastore, A.

C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
[CrossRef]

Pedarnig, J. D.

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

Perea, A.

F. J. Gordillo-Vázquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Pfender, E.

M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Application, Vol. 1 (Plenum, 1994).

Piper, L. G.

Praher, B.

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

Radziemski, L. J.

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).

D. A. Cremers, L. J. Radziemski, and T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

L. J. Radziemski and D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 303–325.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

D. A. Cremers and L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, and J. A. Paisner, eds. (Marcel Dekker, 1987), pp. 351–415.

Richardson, M.

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25, 1316–1323 (2010).
[CrossRef]

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18, 259–266 (2010).
[CrossRef]

A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, “Titanium plasma spectroscopy studies under double pulse laser excitation,” Laser Phys. 19, 1981–1992 (2009).
[CrossRef]

Richardson, M. C.

M. Weidman, S. Palanco, M. Baudelet, and M. C. Richardson, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas,” Spectrochim. Acta B 64, 961–967 (2009).

Roquemore, W. M.

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sakai, Y.

H. Ando, Y. Sakai, and K. Kuwahara, “Universal rule of hydrocarbon oxidation,” SAE Technical Paper 2009-01-0948 (SAE International, 2009).

Scaffidi, J.

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

Scherndl, H.

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

Scott, R. H.

R. H. Scott and A. Strasheim, “Laser-induced plasmas for analytical spectroscopy,” Spectrochim. Acta B 25, 311–332 (1970).

Sdorra, W.

Shen, Q.

Sigman, M.

Singh, J. P.

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sneddon, J.

W. B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Y.-I. Lee, K. Song, and J. Sneddon, “Laser induced plasmas for analytical atomic spectroscopy,” in Lasers in Analytical Atomic Spectroscopy, J. Sneddon, T. L. Thiem, and Y.-I. Lee, eds. (VCH, 1997), 197–235.

Song, K.

Y.-I. Lee, K. Song, and J. Sneddon, “Laser induced plasmas for analytical atomic spectroscopy,” in Lasers in Analytical Atomic Spectroscopy, J. Sneddon, T. L. Thiem, and Y.-I. Lee, eds. (VCH, 1997), 197–235.

Strasheim, A.

R. H. Scott and A. Strasheim, “Laser-induced plasmas for analytical spectroscopy,” Spectrochim. Acta B 25, 311–332 (1970).

Sturm, V.

Taefi, N.

N. Taefi, M. Khalaji, and S. H. Tavassoli, “Determination of elemental composition of cement powder by spark induced breakdown spectroscopy,” Cem. Concr. Res. 40, 1114–1119 (2010).

Tavassoli, S. H.

N. Taefi, M. Khalaji, and S. H. Tavassoli, “Determination of elemental composition of cement powder by spark induced breakdown spectroscopy,” Cem. Concr. Res. 40, 1114–1119 (2010).

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, and G. Christoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

Tomita, E.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/airand C3H8/air laminar flames by laser-induced breakdown spectroscopy,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-965.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Tsuruoka, R.

Y. Ikeda, A. Moon, and R. Tsuruoka, “New break down plasma source by solid-state microwave,” presented at the 3rd North American Symposium on Laser-Induced Breakdown Spectroscopy, Clearwater Beach, Florida, USA, 2011.

Uebbing, J.

Viskup, R.

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

Wainner, R. T.

Watson, J.

R. S. Adrain and J. Watson, “Laser microspectral analysis: a review of principles and applications,” J. Appl. Phys. 17, 1915–1940 (1984).

Weidman, M.

M. Weidman, M. Baudelet, S. Palanco, M. Sigman, P. J. Dagdigian, and M. Richardson, “Nd:YAG-CO2 double-pulse laser induced breakdown spectroscopy of organic films,” Opt. Express 18, 259–266 (2010).
[CrossRef]

M. Weidman, S. Palanco, M. Baudelet, and M. C. Richardson, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas,” Spectrochim. Acta B 64, 961–967 (2009).

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Wu, J.

W. B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Zhou, W.

Anal. Chem.

J. Scaffidi, S. M. Angel, and D. A. Cremers, “Emission enhancement mechanisms in dual-pulse LIBS,” Anal. Chem. 78, 24–32 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. J. Gordillo-Vázquez, A. Perea, A. P. McKiernan, and C. N. Afonso, “Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF,” Appl. Phys. Lett. 86, 181501 (2005).
[CrossRef]

Appl. Spectrosc.

Appl. Spectrosc. Rev.

W. B. Lee, J. Wu, Y.-I. Lee, and J. Sneddon, “Recent applications of laser-induced breakdown spectrometry: a review of material approaches,” Appl. Spectrosc. Rev. 39, 27–97 (2004).
[CrossRef]

Cem. Concr. Res.

N. Taefi, M. Khalaji, and S. H. Tavassoli, “Determination of elemental composition of cement powder by spark induced breakdown spectroscopy,” Cem. Concr. Res. 40, 1114–1119 (2010).

Crit. Rev. Anal. Chem.

D. A. Rusak, B. C. Castle, B. W. Smith, and J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Exp. Therm. Fluid. Sci.

C. Letty, A. Pastore, E. Mastorakos, R. Balachandran, and S. Couris, “Comparison of electrical and laser spark emission spectroscopy for fuel concentration measurements,” Exp. Therm. Fluid. Sci. 34, 338–345 (2010).
[CrossRef]

J. Anal. At. Spectrom.

Y. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: evaluation on ceramics,” J. Anal. At. Spectrom. 25, 1316–1323 (2010).
[CrossRef]

J. Appl. Phys.

R. S. Adrain and J. Watson, “Laser microspectral analysis: a review of principles and applications,” J. Appl. Phys. 17, 1915–1940 (1984).

Laser Phys.

A. A. I. Khalil, M. Richardson, L. Johnson, and M. A. Gondal, “Titanium plasma spectroscopy studies under double pulse laser excitation,” Laser Phys. 19, 1981–1992 (2009).
[CrossRef]

Microchem. J.

L. J. Radziemski, “Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994,” Microchem. J. 50, 218–234 (1994).

Nat. Photon.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy: sparking new applications,” Nat. Photon. 2, 537–540 (2008).
[CrossRef]

Opt. Express

Spectrochim. Acta B

R. H. Scott and A. Strasheim, “Laser-induced plasmas for analytical spectroscopy,” Spectrochim. Acta B 25, 311–332 (1970).

E. Tognoni, V. Palleschi, M. Corsi, and G. Christoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta B 57, 1115–1130 (2002).

V. I. Babushok, F. C. DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta B 61, 999–1014 (2006).

M. Weidman, S. Palanco, M. Baudelet, and M. C. Richardson, “Thermodynamic and spectroscopic properties of Nd:YAG-CO2 double-pulse laser-induced iron plasmas,” Spectrochim. Acta B 64, 961–967 (2009).

R. Viskup, B. Praher, T. Linsmeyer, H. Scherndl, J. D. Pedarnig, and J. Heitz, “Influence of pulse-to-pulse delay for 532 nm double-pulse laser-induced breakdown spectroscopy of technical polymers,” Spectrochim. Acta B 65, 935–942 (2010).

Other

J. A. C. Broekaert, Analytical Atomic Spectrometry with Flames and Plasmas, 2nd ed. (Wiley-VCH, 2005).

M. Cullen, Atomic Spectroscopy in Elemental Analysis (CRC Press, 2004).

Y. Ikeda, A. Moon, and R. Tsuruoka, “New break down plasma source by solid-state microwave,” presented at the 3rd North American Symposium on Laser-Induced Breakdown Spectroscopy, Clearwater Beach, Florida, USA, 2011.

N. Kawahara, E. Tomita, T. Nakayama, Y. Ikeda, and A. Nishiyama, “Spatial and temporal characteristics of laser-induced air plasma,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-1461.

Y. Ikeda, A. Nishiyama, N. Kawahara, E. Tomita, and T. Nakayama, “Local equivalence ratio measurement of CH4/airand C3H8/air laminar flames by laser-induced breakdown spectroscopy,” in 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper 2006-965.

Y.-I. Lee, K. Song, and J. Sneddon, “Laser induced plasmas for analytical atomic spectroscopy,” in Lasers in Analytical Atomic Spectroscopy, J. Sneddon, T. L. Thiem, and Y.-I. Lee, eds. (VCH, 1997), 197–235.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS), Fundamentals and Applications (Cambridge University, 2006).

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

D. A. Cremers and L. J. Radziemski, “Laser plasmas for chemical analysis,” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, and J. A. Paisner, eds. (Marcel Dekker, 1987), pp. 351–415.

L. J. Radziemski and D. A. Cremers, “Spectrochemical analysis using laser plasma excitation,” in Laser-Induced Plasmas and Applications, L. J. Radziemski and D. A. Cremers, eds. (Marcel Dekker, 1989), pp. 303–325.

L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, 1989).

M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas, Fundamentals and Application, Vol. 1 (Plenum, 1994).

H. Ando, Y. Sakai, and K. Kuwahara, “Universal rule of hydrocarbon oxidation,” SAE Technical Paper 2009-01-0948 (SAE International, 2009).

Y. Ikeda, A. Nishiyama, H. Katano, M. Kaneko, and H. Jeong, “Research and development of microwave plasma combustion engine,” SAE Technical Paper 2009-01-1049 (SAE International, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the measurement system for LIBS and SIBS with MW enhancement.

Fig. 2.
Fig. 2.

(a) Calculated results of the field simulator and (b) laser- and spark-induced plasma with and without MWs. An intensified MW field is formed above the antenna.

Fig. 3.
Fig. 3.

(a) Time evolution of gas temperature in atmosphere-pressure plasma, (b) schematic diagram of microwave pulses, and (c) high-speed images of laser-induced plasma with and without MWs.

Fig. 4.
Fig. 4.

Enhancement of the intensity of LIBS and SIBS, and MW power dependency. The laser energy is 180 mJ, and the microwave power is 2.0 kW.

Fig. 5.
Fig. 5.

OH (307.5 nm) luminescence of air plasma in the atmosphere for different MW (a) powers and (b) durations.

Fig. 6.
Fig. 6.

Relationship of plasma size and emission intensity of OH (307.5 nm) by high-speed camera images of LIBS+MW plasma.

Fig. 7.
Fig. 7.

MW-enhanced LIBS and SIBS spectra of Pb.

Fig. 8.
Fig. 8.

MW energy dependency of Pb (I) (405.8 nm) emission intensity.

Fig. 9.
Fig. 9.

Schematic diagram of plasma emission characters with and without MWs.

Metrics