Abstract

Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy,” J. Appl. Polym. Sci. 121, 2710–2716 (2011).
    [CrossRef]
  2. S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
    [CrossRef]
  3. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef]
  4. A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A: Mater. Sci. Process. 92, 197–202 (2008).
    [CrossRef]
  5. K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
    [CrossRef]
  6. G. Asimellis, N. Michos, I. Fasaki, and M. Kompitsas, “Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1338–1343 (2008).
    [CrossRef]
  7. K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
    [CrossRef]
  8. X. D. Hou and B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
    [CrossRef]
  9. A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 185–191 (2010).
    [CrossRef]
  10. W. Hübert and G. Ankerhold, “Elemental misinterpretation in automated analysis of LIBS spectra,” Anal. Bioanal. Chem. 400, 3273–3278 (2011).
    [CrossRef]
  11. R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
    [CrossRef]
  12. N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
    [CrossRef]
  13. D. Verdegem, K. Dijkstra, X. Hanoulle, and G. Lippens, “Graphical interpretation of Boolean operators for protein NMR assignments,” J. Biomol. NMR 42, 11–21 (2008).
    [CrossRef]
  14. K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
    [CrossRef]
  15. C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).
  16. T. Visser and J. H. van der Maas, “Systematic computer-aided interpretation of infrared and Raman vibrational spectra based on the crise program,” Anal. Chim. Acta 122, 347–355 (1980).
    [CrossRef]
  17. L. R. Crawford and J. D. Morrison, “Computer methods in analytical mass spectrometry: identification of an unknown compound in a catalog,” Anal. Chem. 40, 1464–1469 (1968).
    [CrossRef]
  18. F. W. McLafferty, “A century of progress in molecular mass spectrometry,” Ann. Rev. Anal. Chem. 4, 1–22 (2011).
    [CrossRef]
  19. W. L. Chen, “Chemoinformatics: past, present, and future,” J. Chem Inf. Model. 46, 2230–2255 (2006).
    [CrossRef]
  20. K.-P. Hinz, N. Erdmann, C. Gruning, and B. Spengler, “Comparative parallel characterization of particle populations with two mass spectrometric systems LAMPAS 2 and SPASS,” Int. J. Mass Spectrom. 258, 151–166 (2006).
    [CrossRef]
  21. A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
    [CrossRef]
  22. A. A. Gorbatenko, T. A. Labutin, A. M. Popov, and N. B. Zorov, “Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling,” Talanta 69, 1046–1048 (2006).
    [CrossRef]
  23. J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1083–1091 (2005).
    [CrossRef]
  24. C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).
    [CrossRef]
  25. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1405–1411 (2007).
    [CrossRef]
  26. F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
    [CrossRef]
  27. C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
    [CrossRef]
  28. M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
    [CrossRef]
  29. C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
    [CrossRef]
  30. J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
    [CrossRef]
  31. T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,” IEEE Trans. Electron. Comput. EC-14, 326–334 (1965).
    [CrossRef]
  32. O. Linda, M. Manic, and T. R. McJunkin, “Anomaly detection for resilient control systems using fuzzy-neural data fusion engine,” in Proceedings of the 4th International Symposium on Resilient Control Systems (ISRCS 2011) (IEEE, 2011), pp. 35–41.
  33. L. A. Zadeh, “Fuzzy sets,” Inf. Control 8, 338–353 (1965).
    [CrossRef]
  34. J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means clustering algorithm,” Comput. Geosci. 10, 191–203 (1984).
    [CrossRef]
  35. S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation,” IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32, 328–339 (2002).
    [CrossRef]
  36. K.-P. Hinz, M. Greweling, F. Drews, and B. Spengler, “Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles,” J. Am. Soc. Mass Spectrom. 10, 648–660 (1999).
    [CrossRef]
  37. G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
    [CrossRef]
  38. G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
    [CrossRef]
  39. G. Yuan, M. Y. He, and X. R. He, “Identification of aliphatic dienic alcohols and acetates by fuzzy similarity analysis/mass spectrometry,” Acta Chim. Sin. 54, 481–486 (1996).
  40. G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
    [CrossRef]
  41. M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
    [CrossRef]
  42. M. Horiike, G. Yuan, and C. Hirano, “Fuzzy classification of location of double-bonds in tetradecenyl acetates by electron-impact mass-spectrometry,” Agric. Biol. Chem. 55, 2521–2526 (1991).
    [CrossRef]
  43. Y. Gu, C. Hirano, and M. Horiike, “Fuzzy classificational analysis of continuously scanned mass spectra of binary mixtures of positionally isomeric tetradecenols,” Rapid Commun. Mass Spectrom. 5, 622–623 (1991).
    [CrossRef]
  44. M. Bieroza, A. Baker, and J. Bridgeman, “Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment,” Environmetrics 22, 256–270 (2011).
    [CrossRef]
  45. E. Karpushkin, A. Bogomolov, Y. Zhukov, and M. Boruta, “New system for computer-aided infrared and Raman spectrum interpretation,” Chemom. Intell. Lab. Syst. 88, 107–117 (2007).
    [CrossRef]
  46. M. C. Tutzó, R. Perez-Pueyo, M. J. Soneira, and S. R. Moreno, “Fuzzy logic: a technique to Raman spectra recognition,” J. Raman Spectrosc. 37, 1003–1011 (2006).
    [CrossRef]
  47. S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
    [CrossRef]
  48. B. K. Alsberg, R. Goodacre, J. J. Rowland, and D. B. Kell, “Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods,” Anal. Chim. Acta 348, 389–407 (1997).
    [CrossRef]
  49. P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
    [CrossRef]
  50. P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
    [CrossRef]
  51. M. L. Ochoa and P. D. Harrington, “Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry,” Anal. Chem. 77, 854–863 (2005).
    [CrossRef]
  52. P. J. Tandler, J. A. Butcher, H. Tao, and P. D. Harrington, “Analysis of plastic recycling products by expert-systems,” Anal. Chim. Acta 312, 231–244 (1995).
    [CrossRef]
  53. P. D. Harrington, “Minimal neural networks—concerted optimization of multiple decision planes,” Chemom. Intell. Lab. Syst. 18, 157–170 (1993).
    [CrossRef]
  54. T. R. McJunkin and J. R. Scott, “Application of fuzzy logic for automated interpretation of mass spectra,” in Fuzzy Logic Theory, Programming and Applications, R. E. Vargas, ed. (Nova Science, 2009), pp. 85–113.
  55. B. Yan, T. R. McJunkin, D. L. Stoner, and J. R. Scott, “Validation of fuzzy logic method for automated mass spectral classification for mineral imaging,” Appl. Surf. Sci. 253, 2011–2017 (2006).
    [CrossRef]
  56. J. R. Scott, T. R. McJunkin, and P. L. Tremblay, “Automated analysis of mass spectral data using fuzzy logic classification,” J. Assoc. Lab. Auto. 8, 61–63 (2003).
    [CrossRef]
  57. T. R. McJunkin, P. L. Tremblay, and J. R. Scott, “Automation and control of an imaging internal laser desorption Fourier transform mass spectrometer (I2LD-FTMS),” J. Lab. Auto. 7, 76–83 (2002).
    [CrossRef]
  58. C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
    [CrossRef]
  59. J. R. Scott, B. Yan, and D. L. Stoner, “Spatially correlated spectroscopic analysis of microbe–mineral interactions,” J. Microbiol. Methods 67, 381–384 (2006).
    [CrossRef]
  60. J. R. Scott and P. L. Tremblay, “Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer,” Rev. Sci. Instrum. 73, 1108–1116 (2002).
    [CrossRef]
  61. A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 746–754 (2008).
    [CrossRef]
  62. A. de Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 385–394 (2010).
    [CrossRef]
  63. D. Steinley, “K-means clustering: a half-century synthesis,” Br. J. Math. Stat. Psychol. 59, 1–34 (2006).
    [CrossRef]

2011 (4)

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy,” J. Appl. Polym. Sci. 121, 2710–2716 (2011).
[CrossRef]

F. W. McLafferty, “A century of progress in molecular mass spectrometry,” Ann. Rev. Anal. Chem. 4, 1–22 (2011).
[CrossRef]

W. Hübert and G. Ankerhold, “Elemental misinterpretation in automated analysis of LIBS spectra,” Anal. Bioanal. Chem. 400, 3273–3278 (2011).
[CrossRef]

M. Bieroza, A. Baker, and J. Bridgeman, “Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment,” Environmetrics 22, 256–270 (2011).
[CrossRef]

2010 (3)

A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 185–191 (2010).
[CrossRef]

A. de Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 385–394 (2010).
[CrossRef]

N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
[CrossRef]

2009 (3)

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

2008 (7)

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A: Mater. Sci. Process. 92, 197–202 (2008).
[CrossRef]

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

G. Asimellis, N. Michos, I. Fasaki, and M. Kompitsas, “Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1338–1343 (2008).
[CrossRef]

D. Verdegem, K. Dijkstra, X. Hanoulle, and G. Lippens, “Graphical interpretation of Boolean operators for protein NMR assignments,” J. Biomol. NMR 42, 11–21 (2008).
[CrossRef]

C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
[CrossRef]

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 746–754 (2008).
[CrossRef]

2007 (5)

P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
[CrossRef]

E. Karpushkin, A. Bogomolov, Y. Zhukov, and M. Boruta, “New system for computer-aided infrared and Raman spectrum interpretation,” Chemom. Intell. Lab. Syst. 88, 107–117 (2007).
[CrossRef]

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1405–1411 (2007).
[CrossRef]

2006 (10)

A. A. Gorbatenko, T. A. Labutin, A. M. Popov, and N. B. Zorov, “Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling,” Talanta 69, 1046–1048 (2006).
[CrossRef]

W. L. Chen, “Chemoinformatics: past, present, and future,” J. Chem Inf. Model. 46, 2230–2255 (2006).
[CrossRef]

K.-P. Hinz, N. Erdmann, C. Gruning, and B. Spengler, “Comparative parallel characterization of particle populations with two mass spectrometric systems LAMPAS 2 and SPASS,” Int. J. Mass Spectrom. 258, 151–166 (2006).
[CrossRef]

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

M. C. Tutzó, R. Perez-Pueyo, M. J. Soneira, and S. R. Moreno, “Fuzzy logic: a technique to Raman spectra recognition,” J. Raman Spectrosc. 37, 1003–1011 (2006).
[CrossRef]

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

B. Yan, T. R. McJunkin, D. L. Stoner, and J. R. Scott, “Validation of fuzzy logic method for automated mass spectral classification for mineral imaging,” Appl. Surf. Sci. 253, 2011–2017 (2006).
[CrossRef]

J. R. Scott, B. Yan, and D. L. Stoner, “Spatially correlated spectroscopic analysis of microbe–mineral interactions,” J. Microbiol. Methods 67, 381–384 (2006).
[CrossRef]

D. Steinley, “K-means clustering: a half-century synthesis,” Br. J. Math. Stat. Psychol. 59, 1–34 (2006).
[CrossRef]

2005 (3)

M. L. Ochoa and P. D. Harrington, “Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry,” Anal. Chem. 77, 854–863 (2005).
[CrossRef]

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1083–1091 (2005).
[CrossRef]

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

2003 (3)

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

J. R. Scott, T. R. McJunkin, and P. L. Tremblay, “Automated analysis of mass spectral data using fuzzy logic classification,” J. Assoc. Lab. Auto. 8, 61–63 (2003).
[CrossRef]

2002 (5)

T. R. McJunkin, P. L. Tremblay, and J. R. Scott, “Automation and control of an imaging internal laser desorption Fourier transform mass spectrometer (I2LD-FTMS),” J. Lab. Auto. 7, 76–83 (2002).
[CrossRef]

J. R. Scott and P. L. Tremblay, “Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer,” Rev. Sci. Instrum. 73, 1108–1116 (2002).
[CrossRef]

A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
[CrossRef]

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation,” IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32, 328–339 (2002).
[CrossRef]

2000 (1)

X. D. Hou and B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

1999 (1)

K.-P. Hinz, M. Greweling, F. Drews, and B. Spengler, “Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles,” J. Am. Soc. Mass Spectrom. 10, 648–660 (1999).
[CrossRef]

1998 (1)

G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
[CrossRef]

1997 (3)

G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
[CrossRef]

C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).

B. K. Alsberg, R. Goodacre, J. J. Rowland, and D. B. Kell, “Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods,” Anal. Chim. Acta 348, 389–407 (1997).
[CrossRef]

1996 (1)

G. Yuan, M. Y. He, and X. R. He, “Identification of aliphatic dienic alcohols and acetates by fuzzy similarity analysis/mass spectrometry,” Acta Chim. Sin. 54, 481–486 (1996).

1995 (1)

P. J. Tandler, J. A. Butcher, H. Tao, and P. D. Harrington, “Analysis of plastic recycling products by expert-systems,” Anal. Chim. Acta 312, 231–244 (1995).
[CrossRef]

1993 (2)

P. D. Harrington, “Minimal neural networks—concerted optimization of multiple decision planes,” Chemom. Intell. Lab. Syst. 18, 157–170 (1993).
[CrossRef]

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

1992 (1)

M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
[CrossRef]

1991 (2)

M. Horiike, G. Yuan, and C. Hirano, “Fuzzy classification of location of double-bonds in tetradecenyl acetates by electron-impact mass-spectrometry,” Agric. Biol. Chem. 55, 2521–2526 (1991).
[CrossRef]

Y. Gu, C. Hirano, and M. Horiike, “Fuzzy classificational analysis of continuously scanned mass spectra of binary mixtures of positionally isomeric tetradecenols,” Rapid Commun. Mass Spectrom. 5, 622–623 (1991).
[CrossRef]

1984 (1)

J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means clustering algorithm,” Comput. Geosci. 10, 191–203 (1984).
[CrossRef]

1980 (1)

T. Visser and J. H. van der Maas, “Systematic computer-aided interpretation of infrared and Raman vibrational spectra based on the crise program,” Anal. Chim. Acta 122, 347–355 (1980).
[CrossRef]

1968 (1)

L. R. Crawford and J. D. Morrison, “Computer methods in analytical mass spectrometry: identification of an unknown compound in a catalog,” Anal. Chem. 40, 1464–1469 (1968).
[CrossRef]

1965 (2)

T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,” IEEE Trans. Electron. Comput. EC-14, 326–334 (1965).
[CrossRef]

L. A. Zadeh, “Fuzzy sets,” Inf. Control 8, 338–353 (1965).
[CrossRef]

Affolter, C.

C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).

Alsberg, B. K.

B. K. Alsberg, R. Goodacre, J. J. Rowland, and D. B. Kell, “Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods,” Anal. Chim. Acta 348, 389–407 (1997).
[CrossRef]

Ankerhold, G.

W. Hübert and G. Ankerhold, “Elemental misinterpretation in automated analysis of LIBS spectra,” Anal. Bioanal. Chem. 400, 3273–3278 (2011).
[CrossRef]

Anzano, J.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy,” J. Appl. Polym. Sci. 121, 2710–2716 (2011).
[CrossRef]

Asimellis, G.

G. Asimellis, N. Michos, I. Fasaki, and M. Kompitsas, “Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1338–1343 (2008).
[CrossRef]

Autrique, D.

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 746–754 (2008).
[CrossRef]

Baker, A.

M. Bieroza, A. Baker, and J. Bridgeman, “Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment,” Environmetrics 22, 256–270 (2011).
[CrossRef]

Barker, M.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Bauer, C.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Baumann, K.

C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).

Bezdek, J. C.

J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means clustering algorithm,” Comput. Geosci. 10, 191–203 (1984).
[CrossRef]

Bieroza, M.

M. Bieroza, A. Baker, and J. Bridgeman, “Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment,” Environmetrics 22, 256–270 (2011).
[CrossRef]

Bogaerts, A.

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 746–754 (2008).
[CrossRef]

Bogomolov, A.

E. Karpushkin, A. Bogomolov, Y. Zhukov, and M. Boruta, “New system for computer-aided infrared and Raman spectrum interpretation,” Chemom. Intell. Lab. Syst. 88, 107–117 (2007).
[CrossRef]

Bohling, C.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Bonilla, B.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy,” J. Appl. Polym. Sci. 121, 2710–2716 (2011).
[CrossRef]

Boruta, M.

E. Karpushkin, A. Bogomolov, Y. Zhukov, and M. Boruta, “New system for computer-aided infrared and Raman spectrum interpretation,” Chemom. Intell. Lab. Syst. 88, 107–117 (2007).
[CrossRef]

Bousquet, B.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Bridgeman, J.

M. Bieroza, A. Baker, and J. Bridgeman, “Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment,” Environmetrics 22, 256–270 (2011).
[CrossRef]

Burgmeier, S. J.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Butcher, J. A.

P. J. Tandler, J. A. Butcher, H. Tao, and P. D. Harrington, “Analysis of plastic recycling products by expert-systems,” Anal. Chim. Acta 312, 231–244 (1995).
[CrossRef]

Canioni, L.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Casas-González, J.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy,” J. Appl. Polym. Sci. 121, 2710–2716 (2011).
[CrossRef]

Chen, P.

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

Chen, W. L.

W. L. Chen, “Chemoinformatics: past, present, and future,” J. Chem Inf. Model. 46, 2230–2255 (2006).
[CrossRef]

Chen, Z.

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 746–754 (2008).
[CrossRef]

Clerc, J. T.

C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).

Collins, L.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Cortez, J.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Cover, T. M.

T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,” IEEE Trans. Electron. Comput. EC-14, 326–334 (1965).
[CrossRef]

Crawford, L. R.

L. R. Crawford and J. D. Morrison, “Computer methods in analytical mass spectrometry: identification of an unknown compound in a catalog,” Anal. Chem. 40, 1464–1469 (1968).
[CrossRef]

De, F. C.

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

de Giacomo, A.

A. de Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 385–394 (2010).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1405–1411 (2007).
[CrossRef]

Dell’Aglio, M.

A. de Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 385–394 (2010).
[CrossRef]

DeLucia, F. C.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Diedrich, J.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

Dijkstra, K.

D. Verdegem, K. Dijkstra, X. Hanoulle, and G. Lippens, “Graphical interpretation of Boolean operators for protein NMR assignments,” J. Biomol. NMR 42, 11–21 (2008).
[CrossRef]

Drews, F.

K.-P. Hinz, M. Greweling, F. Drews, and B. Spengler, “Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles,” J. Am. Soc. Mass Spectrom. 10, 648–660 (1999).
[CrossRef]

Ehrlich, R.

J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means clustering algorithm,” Comput. Geosci. 10, 191–203 (1984).
[CrossRef]

Eisenhaber, F.

N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
[CrossRef]

Erdmann, N.

K.-P. Hinz, N. Erdmann, C. Gruning, and B. Spengler, “Comparative parallel characterization of particle populations with two mass spectrometric systems LAMPAS 2 and SPASS,” Int. J. Mass Spectrom. 258, 151–166 (2006).
[CrossRef]

Espinoza, J.

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

Fasaki, I.

G. Asimellis, N. Michos, I. Fasaki, and M. Kompitsas, “Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1338–1343 (2008).
[CrossRef]

Firth, A.

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

Full, W.

J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means clustering algorithm,” Comput. Geosci. 10, 191–203 (1984).
[CrossRef]

Galiová, M.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Gaudiuso, R.

A. de Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 385–394 (2010).
[CrossRef]

Gonzaga, F. B.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Goodacre, R.

B. K. Alsberg, R. Goodacre, J. J. Rowland, and D. B. Kell, “Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods,” Anal. Chim. Acta 348, 389–407 (1997).
[CrossRef]

Gorbatenko, A. A.

A. A. Gorbatenko, T. A. Labutin, A. M. Popov, and N. B. Zorov, “Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling,” Talanta 69, 1046–1048 (2006).
[CrossRef]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1405–1411 (2007).
[CrossRef]

Greweling, M.

K.-P. Hinz, M. Greweling, F. Drews, and B. Spengler, “Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles,” J. Am. Soc. Mass Spectrom. 10, 648–660 (1999).
[CrossRef]

Gruning, C.

K.-P. Hinz, N. Erdmann, C. Gruning, and B. Spengler, “Comparative parallel characterization of particle populations with two mass spectrometric systems LAMPAS 2 and SPASS,” Int. J. Mass Spectrom. 258, 151–166 (2006).
[CrossRef]

Gu, Y.

Y. Gu, C. Hirano, and M. Horiike, “Fuzzy classificational analysis of continuously scanned mass spectra of binary mixtures of positionally isomeric tetradecenols,” Rapid Commun. Mass Spectrom. 5, 622–623 (1991).
[CrossRef]

Hanoulle, X.

D. Verdegem, K. Dijkstra, X. Hanoulle, and G. Lippens, “Graphical interpretation of Boolean operators for protein NMR assignments,” J. Biomol. NMR 42, 11–21 (2008).
[CrossRef]

Harmon, R. S.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Harrington, P. B.

P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
[CrossRef]

Harrington, P. D.

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

M. L. Ochoa and P. D. Harrington, “Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry,” Anal. Chem. 77, 854–863 (2005).
[CrossRef]

P. J. Tandler, J. A. Butcher, H. Tao, and P. D. Harrington, “Analysis of plastic recycling products by expert-systems,” Anal. Chim. Acta 312, 231–244 (1995).
[CrossRef]

P. D. Harrington, “Minimal neural networks—concerted optimization of multiple decision planes,” Chemom. Intell. Lab. Syst. 18, 157–170 (1993).
[CrossRef]

Harrison, M.

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

He, M. Y.

G. Yuan, M. Y. He, and X. R. He, “Identification of aliphatic dienic alcohols and acetates by fuzzy similarity analysis/mass spectrometry,” Acta Chim. Sin. 54, 481–486 (1996).

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

He, X. R.

G. Yuan, M. Y. He, and X. R. He, “Identification of aliphatic dienic alcohols and acetates by fuzzy similarity analysis/mass spectrometry,” Acta Chim. Sin. 54, 481–486 (1996).

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

Held, A.

A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
[CrossRef]

Hinman, N. W.

C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
[CrossRef]

Hinz, K.-P.

K.-P. Hinz, N. Erdmann, C. Gruning, and B. Spengler, “Comparative parallel characterization of particle populations with two mass spectrometric systems LAMPAS 2 and SPASS,” Int. J. Mass Spectrom. 258, 151–166 (2006).
[CrossRef]

A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
[CrossRef]

K.-P. Hinz, M. Greweling, F. Drews, and B. Spengler, “Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles,” J. Am. Soc. Mass Spectrom. 10, 648–660 (1999).
[CrossRef]

Hirano, C.

G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
[CrossRef]

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
[CrossRef]

Y. Gu, C. Hirano, and M. Horiike, “Fuzzy classificational analysis of continuously scanned mass spectra of binary mixtures of positionally isomeric tetradecenols,” Rapid Commun. Mass Spectrom. 5, 622–623 (1991).
[CrossRef]

M. Horiike, G. Yuan, and C. Hirano, “Fuzzy classification of location of double-bonds in tetradecenyl acetates by electron-impact mass-spectrometry,” Agric. Biol. Chem. 55, 2521–2526 (1991).
[CrossRef]

Hohmann, K.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Holl, G.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Horiike, M.

G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
[CrossRef]

G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
[CrossRef]

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
[CrossRef]

M. Horiike, G. Yuan, and C. Hirano, “Fuzzy classification of location of double-bonds in tetradecenyl acetates by electron-impact mass-spectrometry,” Agric. Biol. Chem. 55, 2521–2526 (1991).
[CrossRef]

Y. Gu, C. Hirano, and M. Horiike, “Fuzzy classificational analysis of continuously scanned mass spectra of binary mixtures of positionally isomeric tetradecenols,” Rapid Commun. Mass Spectrom. 5, 622–623 (1991).
[CrossRef]

Hou, X. D.

X. D. Hou and B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Hübert, W.

W. Hübert and G. Ankerhold, “Elemental misinterpretation in automated analysis of LIBS spectra,” Anal. Bioanal. Chem. 400, 3273–3278 (2011).
[CrossRef]

Jeyasingham, N.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

Jones, B. T.

X. D. Hou and B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Kaiser, J.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Kanický, V.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Karpushkin, E.

E. Karpushkin, A. Bogomolov, Y. Zhukov, and M. Boruta, “New system for computer-aided infrared and Raman spectrum interpretation,” Chemom. Intell. Lab. Syst. 88, 107–117 (2007).
[CrossRef]

Kell, D. B.

B. K. Alsberg, R. Goodacre, J. J. Rowland, and D. B. Kell, “Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods,” Anal. Chim. Acta 348, 389–407 (1997).
[CrossRef]

Kim, C- S.

M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
[CrossRef]

Kim, C.-S.

G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
[CrossRef]

G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
[CrossRef]

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

Klagkou, K.

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

Klemm, O.

A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
[CrossRef]

Kompitsas, M.

G. Asimellis, N. Michos, I. Fasaki, and M. Kompitsas, “Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1338–1343 (2008).
[CrossRef]

Konecná, V.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Konwar, K. M.

S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation,” IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32, 328–339 (2002).
[CrossRef]

Kotler, J. M.

C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
[CrossRef]

Labutin, T. A.

A. A. Gorbatenko, T. A. Labutin, A. M. Popov, and N. B. Zorov, “Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling,” Talanta 69, 1046–1048 (2006).
[CrossRef]

Langley, G. J.

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

Laurent, C.

P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
[CrossRef]

Le Hecho, I.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Lee, Y. I.

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Levinson, D. F.

P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
[CrossRef]

Levitt, P.

P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
[CrossRef]

Linda, O.

O. Linda, M. Manic, and T. R. McJunkin, “Anomaly detection for resilient control systems using fuzzy-neural data fusion engine,” in Proceedings of the 4th International Symposium on Resilient Control Systems (ISRCS 2011) (IEEE, 2011), pp. 35–41.

Lippens, G.

D. Verdegem, K. Dijkstra, X. Hanoulle, and G. Lippens, “Graphical interpretation of Boolean operators for protein NMR assignments,” J. Biomol. NMR 42, 11–21 (2008).
[CrossRef]

Liška, M.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

López, A. J.

A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A: Mater. Sci. Process. 92, 197–202 (2008).
[CrossRef]

Lucia, Jr.

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

Malina, R.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Manic, M.

O. Linda, M. Manic, and T. R. McJunkin, “Anomaly detection for resilient control systems using fuzzy-neural data fusion engine,” in Proceedings of the 4th International Symposium on Resilient Control Systems (ISRCS 2011) (IEEE, 2011), pp. 35–41.

Mao, R.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Marcotte, E. M.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Markey, S. P.

P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
[CrossRef]

McJunkin, T. R.

C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
[CrossRef]

B. Yan, T. R. McJunkin, D. L. Stoner, and J. R. Scott, “Validation of fuzzy logic method for automated mass spectral classification for mineral imaging,” Appl. Surf. Sci. 253, 2011–2017 (2006).
[CrossRef]

J. R. Scott, T. R. McJunkin, and P. L. Tremblay, “Automated analysis of mass spectral data using fuzzy logic classification,” J. Assoc. Lab. Auto. 8, 61–63 (2003).
[CrossRef]

T. R. McJunkin, P. L. Tremblay, and J. R. Scott, “Automation and control of an imaging internal laser desorption Fourier transform mass spectrometer (I2LD-FTMS),” J. Lab. Auto. 7, 76–83 (2002).
[CrossRef]

T. R. McJunkin and J. R. Scott, “Application of fuzzy logic for automated interpretation of mass spectra,” in Fuzzy Logic Theory, Programming and Applications, R. E. Vargas, ed. (Nova Science, 2009), pp. 85–113.

O. Linda, M. Manic, and T. R. McJunkin, “Anomaly detection for resilient control systems using fuzzy-neural data fusion engine,” in Proceedings of the 4th International Symposium on Resilient Control Systems (ISRCS 2011) (IEEE, 2011), pp. 35–41.

McLafferty, F. W.

F. W. McLafferty, “A century of progress in molecular mass spectrometry,” Ann. Rev. Anal. Chem. 4, 1–22 (2011).
[CrossRef]

McManus, C.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

McMillan, N. J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

McNesby, K. L.

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

Mechtler, K.

N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
[CrossRef]

Michel, A. P. M.

A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 185–191 (2010).
[CrossRef]

Michos, N.

G. Asimellis, N. Michos, I. Fasaki, and M. Kompitsas, “Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1338–1343 (2008).
[CrossRef]

Miranker, D. P.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Mitra, S.

S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation,” IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32, 328–339 (2002).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1405–1411 (2007).
[CrossRef]

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

Montull-Ibor, B.

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy,” J. Appl. Polym. Sci. 121, 2710–2716 (2011).
[CrossRef]

Moreno, S. R.

M. C. Tutzó, R. Perez-Pueyo, M. J. Soneira, and S. R. Moreno, “Fuzzy logic: a technique to Raman spectra recognition,” J. Raman Spectrosc. 37, 1003–1011 (2006).
[CrossRef]

Morrison, J. D.

L. R. Crawford and J. D. Morrison, “Computer methods in analytical mass spectrometry: identification of an unknown compound in a catalog,” Anal. Chem. 40, 1464–1469 (1968).
[CrossRef]

Mujezinovic, N.

N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
[CrossRef]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Multivariate analysis of standoff laser-induced breakdown spectroscopy spectra for classification of explosive-containing residues,” Appl. Opt. 47, G112–G121 (2008).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1405–1411 (2007).
[CrossRef]

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

Nakorchevskiy, A. A.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Nien, J. K.

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

Noll, R.

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1083–1091 (2005).
[CrossRef]

Novotný, J.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Novotný, K.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Ochoa, M. L.

M. L. Ochoa and P. D. Harrington, “Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry,” Anal. Chem. 77, 854–863 (2005).
[CrossRef]

Organ, A.

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

Otruba, V.

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

Pal, S. K.

S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation,” IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32, 328–339 (2002).
[CrossRef]

Palchaudhuri, S.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

Pasquini, C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Perez-Pueyo, R.

M. C. Tutzó, R. Perez-Pueyo, M. J. Soneira, and S. R. Moreno, “Fuzzy logic: a technique to Raman spectra recognition,” J. Raman Spectrosc. 37, 1003–1011 (2006).
[CrossRef]

Piehler, T.

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

Popov, A. M.

A. A. Gorbatenko, T. A. Labutin, A. M. Popov, and N. B. Zorov, “Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling,” Talanta 69, 1046–1048 (2006).
[CrossRef]

Potin-Gautier, M.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Pretsch, E.

C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).

Prince, J. T.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Pullen, F.

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

Ramakrishnan, S. R.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Ramil, A.

A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A: Mater. Sci. Process. 92, 197–202 (2008).
[CrossRef]

Rayens, W.

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

Rehse, S. J.

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

Remus, J.

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Richardson, C. D.

C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
[CrossRef]

Romero, R.

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

Rowland, J. J.

B. K. Alsberg, R. Goodacre, J. J. Rowland, and D. B. Kell, “Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods,” Anal. Chim. Acta 348, 389–407 (1997).
[CrossRef]

Santagata, A.

A. de Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 385–394 (2010).
[CrossRef]

Sarger, L.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Schade, W.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Scheel, D.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Schipper, W.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Schneider, G.

N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
[CrossRef]

Schriber, H.

C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).

Scott, J. R.

C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
[CrossRef]

J. R. Scott, B. Yan, and D. L. Stoner, “Spatially correlated spectroscopic analysis of microbe–mineral interactions,” J. Microbiol. Methods 67, 381–384 (2006).
[CrossRef]

B. Yan, T. R. McJunkin, D. L. Stoner, and J. R. Scott, “Validation of fuzzy logic method for automated mass spectral classification for mineral imaging,” Appl. Surf. Sci. 253, 2011–2017 (2006).
[CrossRef]

J. R. Scott, T. R. McJunkin, and P. L. Tremblay, “Automated analysis of mass spectral data using fuzzy logic classification,” J. Assoc. Lab. Auto. 8, 61–63 (2003).
[CrossRef]

T. R. McJunkin, P. L. Tremblay, and J. R. Scott, “Automation and control of an imaging internal laser desorption Fourier transform mass spectrometer (I2LD-FTMS),” J. Lab. Auto. 7, 76–83 (2002).
[CrossRef]

J. R. Scott and P. L. Tremblay, “Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer,” Rev. Sci. Instrum. 73, 1108–1116 (2002).
[CrossRef]

T. R. McJunkin and J. R. Scott, “Application of fuzzy logic for automated interpretation of mass spectra,” in Fuzzy Logic Theory, Programming and Applications, R. E. Vargas, ed. (Nova Science, 2009), pp. 85–113.

Shibuya, K.

M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
[CrossRef]

Silva, L. M. C.

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

Sirven, J.-B.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Sneddon, J.

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Soneira, M. J.

M. C. Tutzó, R. Perez-Pueyo, M. J. Soneira, and S. R. Moreno, “Fuzzy logic: a technique to Raman spectra recognition,” J. Raman Spectrosc. 37, 1003–1011 (2006).
[CrossRef]

Song, K.

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Spengler, B.

K.-P. Hinz, N. Erdmann, C. Gruning, and B. Spengler, “Comparative parallel characterization of particle populations with two mass spectrometric systems LAMPAS 2 and SPASS,” Int. J. Mass Spectrom. 258, 151–166 (2006).
[CrossRef]

A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
[CrossRef]

K.-P. Hinz, M. Greweling, F. Drews, and B. Spengler, “Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles,” J. Am. Soc. Mass Spectrom. 10, 648–660 (1999).
[CrossRef]

Steinley, D.

D. Steinley, “K-means clustering: a half-century synthesis,” Br. J. Math. Stat. Psychol. 59, 1–34 (2006).
[CrossRef]

Stoner, D. L.

J. R. Scott, B. Yan, and D. L. Stoner, “Spatially correlated spectroscopic analysis of microbe–mineral interactions,” J. Microbiol. Methods 67, 381–384 (2006).
[CrossRef]

B. Yan, T. R. McJunkin, D. L. Stoner, and J. R. Scott, “Validation of fuzzy logic method for automated mass spectral classification for mineral imaging,” Appl. Surf. Sci. 253, 2011–2017 (2006).
[CrossRef]

Sturm, V.

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1083–1091 (2005).
[CrossRef]

Tandler, P. J.

P. J. Tandler, J. A. Butcher, H. Tao, and P. D. Harrington, “Analysis of plastic recycling products by expert-systems,” Anal. Chim. Acta 312, 231–244 (1995).
[CrossRef]

Tao, H.

P. J. Tandler, J. A. Butcher, H. Tao, and P. D. Harrington, “Analysis of plastic recycling products by expert-systems,” Anal. Chim. Acta 312, 231–244 (1995).
[CrossRef]

Tellier, S.

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Tremblay, P. L.

J. R. Scott, T. R. McJunkin, and P. L. Tremblay, “Automated analysis of mass spectral data using fuzzy logic classification,” J. Assoc. Lab. Auto. 8, 61–63 (2003).
[CrossRef]

J. R. Scott and P. L. Tremblay, “Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer,” Rev. Sci. Instrum. 73, 1108–1116 (2002).
[CrossRef]

T. R. McJunkin, P. L. Tremblay, and J. R. Scott, “Automation and control of an imaging internal laser desorption Fourier transform mass spectrometer (I2LD-FTMS),” J. Lab. Auto. 7, 76–83 (2002).
[CrossRef]

Trimborn, A.

A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
[CrossRef]

Tutzó, M. C.

M. C. Tutzó, R. Perez-Pueyo, M. J. Soneira, and S. R. Moreno, “Fuzzy logic: a technique to Raman spectra recognition,” J. Raman Spectrosc. 37, 1003–1011 (2006).
[CrossRef]

van der Maas, J. H.

T. Visser and J. H. van der Maas, “Systematic computer-aided interpretation of infrared and Raman vibrational spectra based on the crise program,” Anal. Chim. Acta 122, 347–355 (1980).
[CrossRef]

Verdegem, D.

D. Verdegem, K. Dijkstra, X. Hanoulle, and G. Lippens, “Graphical interpretation of Boolean operators for protein NMR assignments,” J. Biomol. NMR 42, 11–21 (2008).
[CrossRef]

Vieira, N. E.

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

Visser, T.

T. Visser and J. H. van der Maas, “Systematic computer-aided interpretation of infrared and Raman vibrational spectra based on the crise program,” Anal. Chim. Acta 122, 347–355 (1980).
[CrossRef]

Vrenegor, J.

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1083–1091 (2005).
[CrossRef]

Wang, G. J.

G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
[CrossRef]

Wildpaner, M.

N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
[CrossRef]

Willard, W. S.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Willer, U.

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

Xiao, J.

G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
[CrossRef]

Xiao, J. H.

G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
[CrossRef]

Xu, W. J.

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

Yan, B.

B. Yan, T. R. McJunkin, D. L. Stoner, and J. R. Scott, “Validation of fuzzy logic method for automated mass spectral classification for mineral imaging,” Appl. Surf. Sci. 253, 2011–2017 (2006).
[CrossRef]

J. R. Scott, B. Yan, and D. L. Stoner, “Spatially correlated spectroscopic analysis of microbe–mineral interactions,” J. Microbiol. Methods 67, 381–384 (2006).
[CrossRef]

Yáñez, A.

A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A: Mater. Sci. Process. 92, 197–202 (2008).
[CrossRef]

Yergey, A. L.

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

Yuan, G.

G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
[CrossRef]

G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
[CrossRef]

G. Yuan, M. Y. He, and X. R. He, “Identification of aliphatic dienic alcohols and acetates by fuzzy similarity analysis/mass spectrometry,” Acta Chim. Sin. 54, 481–486 (1996).

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
[CrossRef]

M. Horiike, G. Yuan, and C. Hirano, “Fuzzy classification of location of double-bonds in tetradecenyl acetates by electron-impact mass-spectrometry,” Agric. Biol. Chem. 55, 2521–2526 (1991).
[CrossRef]

Zadeh, L. A.

L. A. Zadeh, “Fuzzy sets,” Inf. Control 8, 338–353 (1965).
[CrossRef]

Zhukov, Y.

E. Karpushkin, A. Bogomolov, Y. Zhukov, and M. Boruta, “New system for computer-aided infrared and Raman spectrum interpretation,” Chemom. Intell. Lab. Syst. 88, 107–117 (2007).
[CrossRef]

Zorov, N. B.

A. A. Gorbatenko, T. A. Labutin, A. M. Popov, and N. B. Zorov, “Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling,” Talanta 69, 1046–1048 (2006).
[CrossRef]

Acta Chim. Sin. (1)

G. Yuan, M. Y. He, and X. R. He, “Identification of aliphatic dienic alcohols and acetates by fuzzy similarity analysis/mass spectrometry,” Acta Chim. Sin. 54, 481–486 (1996).

Agric. Biol. Chem. (1)

M. Horiike, G. Yuan, and C. Hirano, “Fuzzy classification of location of double-bonds in tetradecenyl acetates by electron-impact mass-spectrometry,” Agric. Biol. Chem. 55, 2521–2526 (1991).
[CrossRef]

Anal. Bioanal. Chem. (3)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

W. Hübert and G. Ankerhold, “Elemental misinterpretation in automated analysis of LIBS spectra,” Anal. Bioanal. Chem. 400, 3273–3278 (2011).
[CrossRef]

J.-B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Anal. Chem. (2)

L. R. Crawford and J. D. Morrison, “Computer methods in analytical mass spectrometry: identification of an unknown compound in a catalog,” Anal. Chem. 40, 1464–1469 (1968).
[CrossRef]

M. L. Ochoa and P. D. Harrington, “Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry,” Anal. Chem. 77, 854–863 (2005).
[CrossRef]

Anal. Chim. Acta (4)

P. J. Tandler, J. A. Butcher, H. Tao, and P. D. Harrington, “Analysis of plastic recycling products by expert-systems,” Anal. Chim. Acta 312, 231–244 (1995).
[CrossRef]

B. K. Alsberg, R. Goodacre, J. J. Rowland, and D. B. Kell, “Classification of pyrolysis mass spectra by fuzzy multivariate rule induction—comparison with regression, K-nearest neighbour, neural and decision-tree methods,” Anal. Chim. Acta 348, 389–407 (1997).
[CrossRef]

P. B. Harrington, C. Laurent, D. F. Levinson, P. Levitt, and S. P. Markey, “Bootstrap classification and point-based feature selection from age-staged mouse cerebellum tissues of matrix assisted laser desorption/ionization mass spectra using a fuzzy rule-building expert system,” Anal. Chim. Acta 599, 219–231 (2007).
[CrossRef]

T. Visser and J. H. van der Maas, “Systematic computer-aided interpretation of infrared and Raman vibrational spectra based on the crise program,” Anal. Chim. Acta 122, 347–355 (1980).
[CrossRef]

Ann. Rev. Anal. Chem. (1)

F. W. McLafferty, “A century of progress in molecular mass spectrometry,” Ann. Rev. Anal. Chem. 4, 1–22 (2011).
[CrossRef]

Appl. Geochem. (1)

R. S. Harmon, J. Remus, N. J. McMillan, C. McManus, L. Collins, J. L. Gottfried, F. C. DeLucia, and A. W. Miziolek, “LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals,” Appl. Geochem. 24, 1125–1141 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Process. (1)

A. Ramil, A. J. López, and A. Yáñez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A: Mater. Sci. Process. 92, 197–202 (2008).
[CrossRef]

Appl. Spectrosc. Rev. (1)

K. Song, Y. I. Lee, and J. Sneddon, “Recent developments in instrumentation for laser induced breakdown spectroscopy,” Appl. Spectrosc. Rev. 37, 89–117 (2002).
[CrossRef]

Appl. Surf. Sci. (1)

B. Yan, T. R. McJunkin, D. L. Stoner, and J. R. Scott, “Validation of fuzzy logic method for automated mass spectral classification for mineral imaging,” Appl. Surf. Sci. 253, 2011–2017 (2006).
[CrossRef]

Bioinformatics (1)

S. R. Ramakrishnan, R. Mao, A. A. Nakorchevskiy, J. T. Prince, W. S. Willard, W. J. Xu, E. M. Marcotte, and D. P. Miranker, “A fast coarse filtering method for peptide identification by mass spectrometry,” Bioinformatics 22, 1524–1531 (2006).
[CrossRef]

BMC Genomics (1)

N. Mujezinovic, G. Schneider, M. Wildpaner, K. Mechtler, and F. Eisenhaber, “Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction,” BMC Genomics 11 (Suppl. 1) S13–S18 (2010).
[CrossRef]

Br. J. Math. Stat. Psychol. (1)

D. Steinley, “K-means clustering: a half-century synthesis,” Br. J. Math. Stat. Psychol. 59, 1–34 (2006).
[CrossRef]

Chemom. Intell. Lab. Syst. (3)

P. D. Harrington, N. E. Vieira, P. Chen, J. Espinoza, J. K. Nien, R. Romero, and A. L. Yergey, “Proteomic analysis of amniotic fluids using analysis of variance-principal component analysis and fuzzy rule-building expert systems applied to matrix-assisted laser desorption/ionization mass spectrometry,” Chemom. Intell. Lab. Syst. 82, 283–293 (2006).
[CrossRef]

P. D. Harrington, “Minimal neural networks—concerted optimization of multiple decision planes,” Chemom. Intell. Lab. Syst. 18, 157–170 (1993).
[CrossRef]

E. Karpushkin, A. Bogomolov, Y. Zhukov, and M. Boruta, “New system for computer-aided infrared and Raman spectrum interpretation,” Chemom. Intell. Lab. Syst. 88, 107–117 (2007).
[CrossRef]

Comput. Geosci. (1)

J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: the fuzzy c-means clustering algorithm,” Comput. Geosci. 10, 191–203 (1984).
[CrossRef]

Environmetrics (1)

M. Bieroza, A. Baker, and J. Bridgeman, “Classification and calibration of organic matter fluorescence data with multiway analysis methods and artificial neural networks: an operational tool for improved drinking water treatment,” Environmetrics 22, 256–270 (2011).
[CrossRef]

Geomicrobiol. J. (1)

C. D. Richardson, N. W. Hinman, T. R. McJunkin, J. M. Kotler, and J. R. Scott, “Exploring biosignatures associated with thenardite by geomatrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (GALDI-FTICR-MS),” Geomicrobiol. J. 25, 432–440 (2008).
[CrossRef]

IEEE Trans. Electron. Comput. (1)

T. M. Cover, “Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition,” IEEE Trans. Electron. Comput. EC-14, 326–334 (1965).
[CrossRef]

IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. (1)

S. Mitra, K. M. Konwar, and S. K. Pal, “Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation,” IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 32, 328–339 (2002).
[CrossRef]

Inf. Control (1)

L. A. Zadeh, “Fuzzy sets,” Inf. Control 8, 338–353 (1965).
[CrossRef]

Int. J. Mass Spectrom. (1)

K.-P. Hinz, N. Erdmann, C. Gruning, and B. Spengler, “Comparative parallel characterization of particle populations with two mass spectrometric systems LAMPAS 2 and SPASS,” Int. J. Mass Spectrom. 258, 151–166 (2006).
[CrossRef]

J. Aerosol Sci. (1)

A. Held, K.-P. Hinz, A. Trimborn, B. Spengler, and O. Klemm, “Chemical classes of atmospheric aerosol particles at a rural site in Central Europe during winter,” J. Aerosol Sci. 33, 581–594 (2002).
[CrossRef]

J. Am. Soc. Mass Spectrom. (1)

K.-P. Hinz, M. Greweling, F. Drews, and B. Spengler, “Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles,” J. Am. Soc. Mass Spectrom. 10, 648–660 (1999).
[CrossRef]

J. Appl. Phys. (1)

S. J. Rehse, N. Jeyasingham, J. Diedrich, and S. Palchaudhuri, “A membrane basis for bacterial identification and discrimination using laser-induced breakdown spectroscopy,” J. Appl. Phys. 105, 102034 (2009).
[CrossRef]

J. Appl. Polym. Sci. (1)

J. Anzano, B. Bonilla, B. Montull-Ibor, and J. Casas-González, “Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy,” J. Appl. Polym. Sci. 121, 2710–2716 (2011).
[CrossRef]

J. Assoc. Lab. Auto. (1)

J. R. Scott, T. R. McJunkin, and P. L. Tremblay, “Automated analysis of mass spectral data using fuzzy logic classification,” J. Assoc. Lab. Auto. 8, 61–63 (2003).
[CrossRef]

J. Biomol. NMR (1)

D. Verdegem, K. Dijkstra, X. Hanoulle, and G. Lippens, “Graphical interpretation of Boolean operators for protein NMR assignments,” J. Biomol. NMR 42, 11–21 (2008).
[CrossRef]

J. Brazil. Chem. Soc. (1)

C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, “Laser induced breakdown spectroscopy,” J. Brazil. Chem. Soc. 18, 463–512 (2007).
[CrossRef]

J. Chem Inf. Model. (1)

W. L. Chen, “Chemoinformatics: past, present, and future,” J. Chem Inf. Model. 46, 2230–2255 (2006).
[CrossRef]

J. Chemom. (1)

M. Barker and W. Rayens, “Partial least squares for discrimination,” J. Chemom. 17, 166–173 (2003).
[CrossRef]

J. Lab. Auto. (1)

T. R. McJunkin, P. L. Tremblay, and J. R. Scott, “Automation and control of an imaging internal laser desorption Fourier transform mass spectrometer (I2LD-FTMS),” J. Lab. Auto. 7, 76–83 (2002).
[CrossRef]

J. Microbiol. Methods (1)

J. R. Scott, B. Yan, and D. L. Stoner, “Spatially correlated spectroscopic analysis of microbe–mineral interactions,” J. Microbiol. Methods 67, 381–384 (2006).
[CrossRef]

J. Raman Spectrosc. (1)

M. C. Tutzó, R. Perez-Pueyo, M. J. Soneira, and S. R. Moreno, “Fuzzy logic: a technique to Raman spectra recognition,” J. Raman Spectrosc. 37, 1003–1011 (2006).
[CrossRef]

Microchem. J. (1)

X. D. Hou and B. T. Jones, “Field instrumentation in atomic spectroscopy,” Microchem. J. 66, 115–145 (2000).
[CrossRef]

Mikrochim. Acta (1)

C. Affolter, K. Baumann, J. T. Clerc, H. Schriber, and E. Pretsch, “Automatic interpretation of infrared spectra,” Mikrochim. Acta 14 (Suppl.), 143–147 (1997).

Org. Mass Spectrom. (1)

M. Horiike, G. Yuan, C- S. Kim, C. Hirano, and K. Shibuya, “Determination of the double-bond position in hexadecenols by mass-spectrometry without prior chemical modification,” Org. Mass Spectrom. 27, 944–948 (1992).
[CrossRef]

Rapid Commun. Mass Spectrom. (5)

Y. Gu, C. Hirano, and M. Horiike, “Fuzzy classificational analysis of continuously scanned mass spectra of binary mixtures of positionally isomeric tetradecenols,” Rapid Commun. Mass Spectrom. 5, 622–623 (1991).
[CrossRef]

G. Yuan, M. Y. He, X. R. He, M. Horiike, C.-S. Kim, and C. Hirano, “Mass-spectrometric location of double-bond position in isomeric dodecenols, without chemical derivatization,” Rapid Commun. Mass Spectrom. 7, 591–593 (1993).
[CrossRef]

K. Klagkou, F. Pullen, M. Harrison, A. Organ, A. Firth, and G. J. Langley, “Approaches towards the automated interpretation and prediction of electrospray tandem mass spectra of non-peptidic combinatorial compounds,” Rapid Commun. Mass Spectrom. 17, 1163–1168 (2003).
[CrossRef]

G. Yuan, J. Xiao, M. Horiike, C.-S. Kim, and C. Hirano, “Similarity between mass spectra of isomeric alkenols and their acetates,” Rapid Commun. Mass Spectrom. 12, 1287–1290 (1998).
[CrossRef]

G. Yuan, J. H. Xiao, G. J. Wang, M. Horiike, and C.-S. Kim, “Similarity between mass spectra of double-bond positional isomers of tetradecen-1-ols and their acetates,” Rapid Commun. Mass Spectrom. 11, 1699–1701 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

J. R. Scott and P. L. Tremblay, “Highly reproducible laser beam scanning device for an internal source laser desorption microprobe Fourier transform mass spectrometer,” Rev. Sci. Instrum. 73, 1108–1116 (2002).
[CrossRef]

Spectrochim. Acta Part B: Atom. Spectrosc. (9)

A. Bogaerts, Z. Chen, and D. Autrique, “Double pulse laser ablation and laser induced breakdown spectroscopy: a modeling investigation,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 746–754 (2008).
[CrossRef]

A. de Giacomo, R. Gaudiuso, M. Dell’Aglio, and A. Santagata, “The role of continuum radiation in laser induced plasma spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 385–394 (2010).
[CrossRef]

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1083–1091 (2005).
[CrossRef]

C. Bohling, K. Hohmann, D. Scheel, C. Bauer, W. Schipper, S. J. Burgmeier, U. Willer, G. Holl, and W. Schade, “All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1519–1527 (2007).
[CrossRef]

C. A. Munson, F. C. De, Jr. Lucia, T. Piehler, K. L. McNesby, and A. W. Miziolek, “Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants,” Spectrochim. Acta Part B: Atom. Spectrosc. 60, 1217–1224 (2005).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta Part B: Atom. Spectrosc. 62, 1405–1411 (2007).
[CrossRef]

A. P. M. Michel, “Review: applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 65, 185–191 (2010).
[CrossRef]

K. Novotný, J. Kaiser, M. Galiová, V. Konečná, J. Novotný, R. Malina, M. Liška, V. Kanický, and V. Otruba, “Mapping of different structures on large area of granite sample using laser-ablation based analytical techniques, an exploratory study,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1139–1144 (2008).
[CrossRef]

G. Asimellis, N. Michos, I. Fasaki, and M. Kompitsas, “Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B: Atom. Spectrosc. 63, 1338–1343 (2008).
[CrossRef]

Talanta (1)

A. A. Gorbatenko, T. A. Labutin, A. M. Popov, and N. B. Zorov, “Reduction of the matrix influence on analytical signal in laser-enhanced ionization spectrometry with laser sampling,” Talanta 69, 1046–1048 (2006).
[CrossRef]

Other (2)

O. Linda, M. Manic, and T. R. McJunkin, “Anomaly detection for resilient control systems using fuzzy-neural data fusion engine,” in Proceedings of the 4th International Symposium on Resilient Control Systems (ISRCS 2011) (IEEE, 2011), pp. 35–41.

T. R. McJunkin and J. R. Scott, “Application of fuzzy logic for automated interpretation of mass spectra,” in Fuzzy Logic Theory, Programming and Applications, R. E. Vargas, ed. (Nova Science, 2009), pp. 85–113.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Laser setup used for acquisition of LIBS data.

Fig. 2.
Fig. 2.

LIBS spectra of Cu-containing alloys: (a) steel TIG 80S-D2 welding rod, (b) Si bronze welding rod, (c) 99.95% Cu gasket.

Fig. 3.
Fig. 3.

LIBS spectra of three stainless steel alloys: (a) 316LSi, (b) 309, (c) 308LSi.

Fig. 4.
Fig. 4.

Illustration of the potential benefit of dividing the center by small displacement of a new center instead of starting with new random centers in the divided data points.

Fig. 5.
Fig. 5.

Rows of the seven samples with the fuzzy classification executed show that three different types of copper-infused samples are successfully classified. The stainless steel series is successfully segmented from the others, but variability within the stainless steel groups leads to misclassifications. Introducing In produces the appropriate classification of “Unknown.” x -axis numbers are simply the sample numbers of that type from the test data set.

Fig. 6.
Fig. 6.

The K-means centers for two clusters are shown in two curves as a way to display the center’s amplitudes ( log 10 ) for each of the 48 POIs. Two POIs that separate the two clusters Cr520 and Cu510 are indicated on the plot.

Fig. 7.
Fig. 7.

Representation of typical LIBS spectra acquired for each of the unknown samples: (a) 304L stainless steel, (b) In, (c) Si bronze.

Tables (2)

Tables Icon

Table 1. Elemental Composition of Welding Rod Alloys in Percent (%) by Mass

Tables Icon

Table 2. Example of Analysis from the K-means Cluster Center for Selected Peaks

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 N i = 1 N a i , λ = ( i = 1 N a i , λ ) 1 N .

Metrics