Abstract

The increase of greenhouse gas (i.e., CO2) levels in the atmosphere has caused noticeable climate change. Many nations are currently looking into methods of permanent underground storage for CO2 in an attempt to mitigate this problem. The goal of this work is to develop a process for studying the total carbon content in soils before, during, and after CO2 injection to ensure that no leakage is occurring or to determine how much is leaking if it is occurring and what effect it will have on the ecosystem between the injection formation and the atmosphere. In this study, we quantitatively determine the total carbon concentration in soil using laser-induced breakdown spectroscopy (LIBS). A soil sample from Starkville, Mississippi, USA was mixed with different amounts of carbon powder, which was used as a calibration for additional carbon in soil. Test samples were prepared by adding different but known amounts of carbon powder to a soil sample and then mixing with polyvinyl alcohol binder before being pressed into pellets. LIBS spectra of the test samples were collected and analyzed to obtain optimized conditions for the measurement of total carbon in soil with LIBS. The total carbon content in the samples was also measured by a carbon analyzer, and the data (average of triplicates) were used as a reference in developing calibration curves for a modified version of the single linear regression model and the multiple linear regression model. The calibration data were then used to determine the total carbon concentration of an unknown sample. This work is intended to be used in the initial development of a miniaturized, field-portable LIBS analyzer for CO2 leak detection.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
    [CrossRef]
  2. M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
    [CrossRef]
  3. R. Lal, “Forest soils and carbon sequestration,” For. Ecol. Manage. 220, 242–258 (2005).
    [CrossRef]
  4. R. Lal, “Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2 enrichment,” Soil Tillage Res. 43, 81–107 (1997).
    [CrossRef]
  5. R. Lal, “Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect,” Prog. Environ. Sci. 1, 307–326 (1999).
  6. S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
    [CrossRef]
  7. R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54(2007).
  8. Z. Sulcek and P. Povondra, Methods of Decomposition in Inorganic Analysis, 1a ed. (CRC Press, 1989).
  9. D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
    [CrossRef]
  10. M. Z. Martin, S. D. Wullschleger, C. T. Garten, and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt. 42, 2072–2077 (2003).
    [CrossRef]
  11. M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
    [CrossRef]
  12. M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
    [CrossRef]
  13. D. R. Hirmas, C. Amrhein, and R. C. Graham, “Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont,” Geoderma 154, 486–494 (2010).
    [CrossRef]
  14. Y. Kuzyakov, “Sources of CO2 efflux from soil and review of partitioning methods,” Soil Biol. Biochem. 38, 425–448(2006).
    [CrossRef]
  15. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
    [CrossRef]
  16. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  17. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).
  18. J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).
  19. B. Lal, H. Zheng, F. Y. Yueh, and J. P. Singh, “Parametric study of pellets for elemental analysis with laser-induced breakdown spectroscopy,” Appl. Opt. 43, 2792–2797 (2004).
    [CrossRef]
  20. S. Weisberg, Applied Linear Regression, 3rd ed. (Wiley, 2005).
  21. K. H. Esbensen, Multivariate Data Analysis in Practice, 5th ed. (Camo Inc., 2004).
  22. K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
    [CrossRef]
  23. Q. L. Zhang, J. P. Zhang, and L. Zhang, “Signal enhancement of the laser-induced plasma in the soil mixed with carbon,” Chin. Sci. Bull. 55, 386–389 (2010).
    [CrossRef]

2011 (1)

K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
[CrossRef]

2010 (4)

Q. L. Zhang, J. P. Zhang, and L. Zhang, “Signal enhancement of the laser-induced plasma in the soil mixed with carbon,” Chin. Sci. Bull. 55, 386–389 (2010).
[CrossRef]

D. R. Hirmas, C. Amrhein, and R. C. Graham, “Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont,” Geoderma 154, 486–494 (2010).
[CrossRef]

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

2009 (1)

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

2008 (1)

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

2007 (2)

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54(2007).

2006 (2)

Y. Kuzyakov, “Sources of CO2 efflux from soil and review of partitioning methods,” Soil Biol. Biochem. 38, 425–448(2006).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

2005 (1)

R. Lal, “Forest soils and carbon sequestration,” For. Ecol. Manage. 220, 242–258 (2005).
[CrossRef]

2004 (1)

2003 (1)

2001 (1)

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

1999 (1)

R. Lal, “Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect,” Prog. Environ. Sci. 1, 307–326 (1999).

1997 (1)

R. Lal, “Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2 enrichment,” Soil Tillage Res. 43, 81–107 (1997).
[CrossRef]

Amrhein, C.

D. R. Hirmas, C. Amrhein, and R. C. Graham, “Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont,” Geoderma 154, 486–494 (2010).
[CrossRef]

Andre, N.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

Andre, N. O.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Ayyalasomayajula, K. K.

K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
[CrossRef]

Belkov, M. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Breshears, D. D.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Brown, J. R.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Burakov, V. S.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Catlett, K. M.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Corsi, M.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Cremers, D. A.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cristoforetti, G.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Da Silva, R. M.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

De Giacomo, A.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Dikshit, V.

K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
[CrossRef]

Ebinger, M.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

Ebinger, M. H.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Esbensen, K. H.

K. H. Esbensen, Multivariate Data Analysis in Practice, 5th ed. (Camo Inc., 2004).

Ferreira, E. C.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

Ferreira, E. J.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

Ferris, M. J.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Garten, C. T.

Gehl, R. J.

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54(2007).

Graham, R. C.

D. R. Hirmas, C. Amrhein, and R. C. Graham, “Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont,” Geoderma 154, 486–494 (2010).
[CrossRef]

Harris, R.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

Harris, R. H.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Hidalgo, M.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Hirmas, D. R.

D. R. Hirmas, C. Amrhein, and R. C. Graham, “Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont,” Geoderma 154, 486–494 (2010).
[CrossRef]

Kammerdiener, S. S.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Kiris, V. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Krug, F. J.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

Kuzyakov, Y.

Y. Kuzyakov, “Sources of CO2 efflux from soil and review of partitioning methods,” Soil Biol. Biochem. 38, 425–448(2006).
[CrossRef]

Labbe, N.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

Lal, B.

Lal, R.

R. Lal, “Forest soils and carbon sequestration,” For. Ecol. Manage. 220, 242–258 (2005).
[CrossRef]

R. Lal, “Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect,” Prog. Environ. Sci. 1, 307–326 (1999).

R. Lal, “Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2 enrichment,” Soil Tillage Res. 43, 81–107 (1997).
[CrossRef]

Legnaiola, S.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Martin, M. Z.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

M. Z. Martin, S. D. Wullschleger, C. T. Garten, and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt. 42, 2072–2077 (2003).
[CrossRef]

Martin-Neto, L.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

Milori, D. M. B. P.

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

Miziolek, A. W.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Palleschi, V.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Palumbo, A. V.

Pandhija, S.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

Povondra, P.

Z. Sulcek and P. Povondra, Methods of Decomposition in Inorganic Analysis, 1a ed. (CRC Press, 1989).

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rai, A. K.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

Rai, N. K.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

Raikov, S. N.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Rice, C. W.

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54(2007).

Salvetti, A.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Schechter, I.

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

Singh, J. P.

K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
[CrossRef]

B. Lal, H. Zheng, F. Y. Yueh, and J. P. Singh, “Parametric study of pellets for elemental analysis with laser-induced breakdown spectroscopy,” Appl. Opt. 43, 2792–2797 (2004).
[CrossRef]

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).

Smith, L. T.

K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
[CrossRef]

Sulcek, Z.

Z. Sulcek and P. Povondra, Methods of Decomposition in Inorganic Analysis, 1a ed. (CRC Press, 1989).

Tarasenko, N. V.

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Thakur, S. N.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).

Tognoni, E.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Unkefer, P. J.

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Vallebona, C.

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Vass, A. A.

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

Weisberg, S.

S. Weisberg, Applied Linear Regression, 3rd ed. (Wiley, 2005).

Wullschleger, S. D.

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

M. Z. Martin, S. D. Wullschleger, C. T. Garten, and A. V. Palumbo, “Laser-induced breakdown spectroscopy for the environmental determination of total carbon and nitrogen in soils,” Appl. Opt. 42, 2072–2077 (2003).
[CrossRef]

Yueh, F. Y.

K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
[CrossRef]

B. Lal, H. Zheng, F. Y. Yueh, and J. P. Singh, “Parametric study of pellets for elemental analysis with laser-induced breakdown spectroscopy,” Appl. Opt. 43, 2792–2797 (2004).
[CrossRef]

Zhang, J. P.

Q. L. Zhang, J. P. Zhang, and L. Zhang, “Signal enhancement of the laser-induced plasma in the soil mixed with carbon,” Chin. Sci. Bull. 55, 386–389 (2010).
[CrossRef]

Zhang, L.

Q. L. Zhang, J. P. Zhang, and L. Zhang, “Signal enhancement of the laser-induced plasma in the soil mixed with carbon,” Chin. Sci. Bull. 55, 386–389 (2010).
[CrossRef]

Zhang, Q. L.

Q. L. Zhang, J. P. Zhang, and L. Zhang, “Signal enhancement of the laser-induced plasma in the soil mixed with carbon,” Chin. Sci. Bull. 55, 386–389 (2010).
[CrossRef]

Zheng, H.

Anal. Bioanal. Chem. (1)

K. K. Ayyalasomayajula, V. Dikshit, F. Y. Yueh, J. P. Singh, and L. T. Smith, “Quantitative analysis of slurry sample by laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 400, 3315–3322 (2011).
[CrossRef]

Appl. Geochem. (1)

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaiola, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Double pulse, calibration-free laser-induced breakdown spectroscopy: a new technique for in situ standard-less analysis of polluted soils,” Appl. Geochem. 21, 748–755 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

Chin. Sci. Bull. (1)

Q. L. Zhang, J. P. Zhang, and L. Zhang, “Signal enhancement of the laser-induced plasma in the soil mixed with carbon,” Chin. Sci. Bull. 55, 386–389 (2010).
[CrossRef]

Clim. Change (1)

R. J. Gehl and C. W. Rice, “Emerging technologies for in situ measurement of soil carbon,” Clim. Change 80, 43–54(2007).

For. Ecol. Manage. (1)

R. Lal, “Forest soils and carbon sequestration,” For. Ecol. Manage. 220, 242–258 (2005).
[CrossRef]

Geoderma (1)

D. R. Hirmas, C. Amrhein, and R. C. Graham, “Spatial and process-based modeling of soil inorganic carbon storage in an arid piedmont,” Geoderma 154, 486–494 (2010).
[CrossRef]

J. Environ. Qual. (1)

D. A. Cremers, M. H. Ebinger, D. D. Breshears, P. J. Unkefer, S. S. Kammerdiener, M. J. Ferris, K. M. Catlett, and J. R. Brown, “Measuring total soil carbon with laser-induced breakdown spectroscopy (LIBS),” J. Environ. Qual. 30, 2202–2206(2001).
[CrossRef]

Prog. Environ. Sci. (1)

R. Lal, “Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect,” Prog. Environ. Sci. 1, 307–326 (1999).

Soil Biol. Biochem. (1)

Y. Kuzyakov, “Sources of CO2 efflux from soil and review of partitioning methods,” Soil Biol. Biochem. 38, 425–448(2006).
[CrossRef]

Soil Sci. Soc. Am. J. (1)

M. Z. Martin, N. Labbe, N. O. Andre, S. D. Wullschleger, R. H. Harris, and M. H. Ebinger, “Novel multivariate analysis for soil carbon measurement using laser-induced breakdown spectroscopy,” Soil Sci. Soc. Am. J. 74, 87–93 (2010).
[CrossRef]

Soil Tillage Res. (1)

R. Lal, “Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2 enrichment,” Soil Tillage Res. 43, 81–107 (1997).
[CrossRef]

Spectrochim. Acta B (3)

R. M. Da Silva, D. M. B. P. Milori, E. C. Ferreira, E. J. Ferreira, F. J. Krug, and L. Martin-Neto, “Total carbon measurement in whole tropical soil sample,” Spectrochim. Acta B 63, 1221–1224 (2008).
[CrossRef]

M. Z. Martin, N. Labbe, N. Andre, R. Harris, M. Ebinger, S. D. Wullschleger, and A. A. Vass, “High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications,” Spectrochim. Acta B 62, 1426–1432 (2007).
[CrossRef]

M. V. Belkov, V. S. Burakov, A. De Giacomo, V. V. Kiris, S. N. Raikov, and N. V. Tarasenko, “Comparison of two laser-induced breakdown spectroscopy techniques for total carbon measurement in soils,” Spectrochim. Acta B 64, 899–904 (2009).
[CrossRef]

Other (6)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications (Cambridge University, 2006).

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier Science, 2007).

Z. Sulcek and P. Povondra, Methods of Decomposition in Inorganic Analysis, 1a ed. (CRC Press, 1989).

S. Weisberg, Applied Linear Regression, 3rd ed. (Wiley, 2005).

K. H. Esbensen, Multivariate Data Analysis in Practice, 5th ed. (Camo Inc., 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of LIBS experimental setup.

Fig. 2.
Fig. 2.

LIBS spectra of 3.74% pellet sample.

Fig. 3.
Fig. 3.

Spectrum of emission lines selected for LIBS analysis.

Fig. 4.
Fig. 4.

Calibration plots based on line-intensity ratios of carbon using modified SLR method.

Tables (4)

Tables Icon

Table 1. Total Weight Percent of Carbon in the Prepared Pellets

Tables Icon

Table 2. Comparison between LIBS Analysis (SLR model) and Carbon Analyzer Data

Tables Icon

Table 3. Comparison between LIBS Analysis (MLR model) and Carbon Analyzer Data

Tables Icon

Table 4. Comparison between LIBS Analysis of SLR and MLR Models and Carbon Analyzer Analysis for Unknown Sample

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Cp=b0+in(biAi),
RA(%)=|ClibsCtrue|Ctrue×100%,

Metrics