Abstract

The feasibility of exploiting plasma chemistry to study the chemical reactions between metallic nanoparticles and molecular explosives such as cyclotrimethylenetrinitramine (RDX) has been demonstrated. This method, based on laser-induced breakdown spectroscopy, involves the production of nanoparticles in a laser-induced plasma and the simultaneous observation of time-resolved atomic and molecular emission characteristic of the species involved in the intermediate chemical reactions of the nanoenergetic material in the plasma. Using this method, it has been confirmed that the presence of aluminum promotes the ejection process of carbon from the intermediate products of RDX. The time evolution of species formation, the effects of laser pulse energy, and the effects of trace metal content on the chemical reactions were also studied.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Politzer, P. Lane, and M. E. Grice, “Energetics of aluminum combustion,” J. Phys. Chem. A 105, 7473–7480 (2001).
    [CrossRef]
  2. P. W. Cooper and S. R. Kurowski, Introduction to the Technology of Explosives (Wiley-VCH, 1996).
  3. P. Brousseau and C. J. Anderson, “Nanometric aluminum in explosives,” Propellants Explos. Pyrotech. 27, 300–306 (2002).
    [CrossRef]
  4. D. D. Dlott, “Thinking big (and small) about energetic materials,” Mater. Sci. Technol. 22, 463–473 (2006).
    [CrossRef]
  5. Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
    [CrossRef]
  6. Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
    [CrossRef]
  7. M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
    [CrossRef]
  8. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
    [CrossRef]
  9. S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
    [CrossRef]
  10. R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008).
    [CrossRef]
  11. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  12. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef]
  13. V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
    [CrossRef]
  14. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
    [CrossRef]
  15. F. C. De Lucia and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
    [CrossRef]
  16. P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66(2010).
    [CrossRef]
  17. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
    [CrossRef]
  18. M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
    [CrossRef]
  19. Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1)” (National Institute of Standards and Technology, 2010), retrieved 6 Sept. 2011, http://physics.nist.gov/asd .
  20. V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
    [CrossRef]
  21. M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
    [CrossRef]
  22. M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
    [CrossRef]
  23. Q. Ma and P. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400, 3193–3205 (2011).
    [CrossRef]
  24. S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture streams,” Combust. Flame 108, 387–390 (1997).
    [CrossRef]
  25. A. Fontijn and W. Felder, “HTFFR kinetics studies of Al+CO2→AlO+CO from 300 to 1900 K, a non-Arrhenius reaction,” J. Chem. Phys. 67, 1561–1569 (1977).
    [CrossRef]
  26. D. R. Lide, ed., Handbook of Chemistry and Physics, 75th ed. (CRC Press, 1994).
  27. J. Akhavan, The Chemistry of Explosives, 2nd ed. (The Royal Society of Chemistry, 2004).
  28. Z. Ji and L. Shufen, “Aluminum oxidation in nitramine propellant,” Propellants Explos. Pyrotech. 24, 224–226(1999).
    [CrossRef]
  29. K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
    [CrossRef]
  30. I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
    [CrossRef]
  31. C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61, 321–326 (2007).
    [CrossRef]

2011 (3)

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
[CrossRef]

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Q. Ma and P. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400, 3193–3205 (2011).
[CrossRef]

2010 (2)

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66(2010).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

2009 (3)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
[CrossRef]

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

2008 (2)

R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008).
[CrossRef]

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

2007 (4)

Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
[CrossRef]

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61, 321–326 (2007).
[CrossRef]

2006 (3)

I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
[CrossRef]

D. D. Dlott, “Thinking big (and small) about energetic materials,” Mater. Sci. Technol. 22, 463–473 (2006).
[CrossRef]

2005 (2)

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
[CrossRef]

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
[CrossRef]

2004 (1)

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

2002 (2)

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[CrossRef]

P. Brousseau and C. J. Anderson, “Nanometric aluminum in explosives,” Propellants Explos. Pyrotech. 27, 300–306 (2002).
[CrossRef]

2001 (1)

P. Politzer, P. Lane, and M. E. Grice, “Energetics of aluminum combustion,” J. Phys. Chem. A 105, 7473–7480 (2001).
[CrossRef]

1999 (1)

Z. Ji and L. Shufen, “Aluminum oxidation in nitramine propellant,” Propellants Explos. Pyrotech. 24, 224–226(1999).
[CrossRef]

1997 (1)

S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture streams,” Combust. Flame 108, 387–390 (1997).
[CrossRef]

1977 (1)

A. Fontijn and W. Felder, “HTFFR kinetics studies of Al+CO2→AlO+CO from 300 to 1900 K, a non-Arrhenius reaction,” J. Chem. Phys. 67, 1561–1569 (1977).
[CrossRef]

Akhavan, J.

J. Akhavan, The Chemistry of Explosives, 2nd ed. (The Royal Society of Chemistry, 2004).

Amoruso, S.

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
[CrossRef]

Anderson, C. J.

P. Brousseau and C. J. Anderson, “Nanometric aluminum in explosives,” Propellants Explos. Pyrotech. 27, 300–306 (2002).
[CrossRef]

Atanasov, P. A.

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
[CrossRef]

Babushok, V. I.

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66(2010).
[CrossRef]

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
[CrossRef]

Balchev, I.

I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
[CrossRef]

Barcikowski, S.

R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008).
[CrossRef]

Baudelet, M.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

Boueri, M.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

Brousseau, P.

P. Brousseau and C. J. Anderson, “Nanometric aluminum in explosives,” Propellants Explos. Pyrotech. 27, 300–306 (2002).
[CrossRef]

Brown, E. E.

Bruzzese, R.

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
[CrossRef]

Buono, E.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
[CrossRef]

Chichkov, B.

R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008).
[CrossRef]

Civiš, M.

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Civiš, S.

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Cooper, P. W.

P. W. Cooper and S. R. Kurowski, Introduction to the Technology of Explosives (Wiley-VCH, 1996).

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Dagdigian, P.

Q. Ma and P. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400, 3193–3205 (2011).
[CrossRef]

Dagdigian, P. J.

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66(2010).
[CrossRef]

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

De Lucia, F. C.

F. C. De Lucia and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
[CrossRef]

DeLucia, F. C.

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

Dieling, C.

R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008).
[CrossRef]

Dlott, D. D.

D. D. Dlott, “Thinking big (and small) about energetic materials,” Mater. Sci. Technol. 22, 463–473 (2006).
[CrossRef]

Dona, A.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
[CrossRef]

Dryahina, K.

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Eliaz, N.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Eliezer, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Felder, W.

A. Fontijn and W. Felder, “HTFFR kinetics studies of Al+CO2→AlO+CO from 300 to 1900 K, a non-Arrhenius reaction,” J. Chem. Phys. 67, 1561–1569 (1977).
[CrossRef]

Fisher, D.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Fontijn, A.

A. Fontijn and W. Felder, “HTFFR kinetics studies of Al+CO2→AlO+CO from 300 to 1900 K, a non-Arrhenius reaction,” J. Chem. Phys. 67, 1561–1569 (1977).
[CrossRef]

Fraenkel, M.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Friedlander, S. K.

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[CrossRef]

Gottfried, J. L.

F. C. De Lucia and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
[CrossRef]

Gouzman, I.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Grice, M. E.

P. Politzer, P. Lane, and M. E. Grice, “Energetics of aluminum combustion,” J. Phys. Chem. A 105, 7473–7480 (2001).
[CrossRef]

Grossman, E.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Henis, Z.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Hommerich, U. H.

Horovitz, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Hu, D.

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

Ji, Z.

Z. Ji and L. Shufen, “Aluminum oxidation in nitramine propellant,” Propellants Explos. Pyrotech. 24, 224–226(1999).
[CrossRef]

Jovicevic, S.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
[CrossRef]

Khachatrian, A.

Kramida, A. E.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1)” (National Institute of Standards and Technology, 2010), retrieved 6 Sept. 2011, http://physics.nist.gov/asd .

Kurowski, S. R.

P. W. Cooper and S. R. Kurowski, Introduction to the Technology of Explosives (Wiley-VCH, 1996).

Kyncl, M.

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Lane, P.

P. Politzer, P. Lane, and M. E. Grice, “Energetics of aluminum combustion,” J. Phys. Chem. A 105, 7473–7480 (2001).
[CrossRef]

Laserna, J. J.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
[CrossRef]

Lazic, V.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
[CrossRef]

Lee, D.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
[CrossRef]

Lereah, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Lucena, P.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
[CrossRef]

Ma, Q.

Q. Ma and P. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400, 3193–3205 (2011).
[CrossRef]

Maman, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Mao, S. S.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

Mao, X.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

Mao, X. L.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Marinova, T.

I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
[CrossRef]

Minkovski, N.

I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
[CrossRef]

Mukherjee, D.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
[CrossRef]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
[CrossRef]

Nedialkov, N. N.

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
[CrossRef]

Nusca, M. J.

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

Palucci, A.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
[CrossRef]

Park, K.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
[CrossRef]

Pecker, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Piscitelli, V.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

Poggi, C.

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
[CrossRef]

Politzer, P.

P. Politzer, P. Lane, and M. E. Grice, “Energetics of aluminum combustion,” J. Phys. Chem. A 105, 7473–7480 (2001).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rai, A.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
[CrossRef]

Ralchenko, Y.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1)” (National Institute of Standards and Technology, 2010), retrieved 6 Sept. 2011, http://physics.nist.gov/asd .

Reader, J.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1)” (National Institute of Standards and Technology, 2010), retrieved 6 Sept. 2011, http://physics.nist.gov/asd .

Russo, R.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Russo, R. E.

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

Sabotinov, N.

I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
[CrossRef]

Samuels, A. C.

Sattari, R.

R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008).
[CrossRef]

Schmidt-Ott, A.

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[CrossRef]

Shipochka, M.

I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
[CrossRef]

Shufen, L.

Z. Ji and L. Shufen, “Aluminum oxidation in nitramine propellant,” Propellants Explos. Pyrotech. 24, 224–226(1999).
[CrossRef]

Snyder, A. P.

Sogo, S.

S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture streams,” Combust. Flame 108, 387–390 (1997).
[CrossRef]

Song, Y.

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
[CrossRef]

Sovová, K.

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Španél, P.

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Team, N. A.

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1)” (National Institute of Standards and Technology, 2010), retrieved 6 Sept. 2011, http://physics.nist.gov/asd .

Tobaria, L. M.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
[CrossRef]

Trivedi, S. B.

Ullmann, M.

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[CrossRef]

Vitiello, M.

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
[CrossRef]

Wang, Y.-P.

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
[CrossRef]

Wu, G.-D.

Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
[CrossRef]

Wu, J.-H.

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
[CrossRef]

Xue, M.-A.

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

Yang, C. S.-C.

Yang, X.-D.

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
[CrossRef]

Yu, J.

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

Yuasa, S.

S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture streams,” Combust. Flame 108, 387–390 (1997).
[CrossRef]

Zachariah, M. R.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
[CrossRef]

Zhu, Y.

S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture streams,” Combust. Flame 108, 387–390 (1997).
[CrossRef]

Anal. Bioanal. Chem. (2)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Q. Ma and P. Dagdigian, “Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds,” Anal. Bioanal. Chem. 400, 3193–3205 (2011).
[CrossRef]

Anal. Chem. (1)

M. Civiš, S. Civiš, K. Sovová, K. Dryahina, P. Španél, and M. Kyncl, “Laser ablation of FOX-7: proposed mechanism of decomposition,” Anal. Chem. 83, 1069–1077 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Appl. Surf. Sci. (1)

M. Boueri, M. Baudelet, J. Yu, X. L. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Combust. Flame (1)

S. Yuasa, Y. Zhu, and S. Sogo, “Ignition and combustion of aluminum in oxygen/nitrogen mixture streams,” Combust. Flame 108, 387–390 (1997).
[CrossRef]

J. Appl. Phys. (1)

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, “Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum,” J. Appl. Phys. 98, 044907 (2005).
[CrossRef]

J. Chem. Phys. (1)

A. Fontijn and W. Felder, “HTFFR kinetics studies of Al+CO2→AlO+CO from 300 to 1900 K, a non-Arrhenius reaction,” J. Chem. Phys. 67, 1561–1569 (1977).
[CrossRef]

J. Laser Micro/Nanoeng. (1)

R. Sattari, C. Dieling, S. Barcikowski, and B. Chichkov, “Laser-based fragmentation of microparticles for nanoparticle generation,” J. Laser Micro/Nanoeng. 3, 100–105 (2008).
[CrossRef]

J. Nanopart. Res. (1)

M. Ullmann, S. K. Friedlander, and A. Schmidt-Ott, “Nanoparticle formation by laser ablation,” J. Nanopart. Res. 4, 499–509 (2002).
[CrossRef]

J. Phys. Chem. A (1)

P. Politzer, P. Lane, and M. E. Grice, “Energetics of aluminum combustion,” J. Phys. Chem. A 105, 7473–7480 (2001).
[CrossRef]

J. Phys. Chem. B (1)

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109, 7290–7299 (2005).
[CrossRef]

J. Phys. D (2)

Y. Song, J.-H. Wu, Y.-P. Wang, G.-D. Wu, and X.-D. Yang, “Optical investigation of shock-produced chemical products in pseudo-aluminized explosive powders explosion,” J. Phys. D 40, 3541–3544 (2007).
[CrossRef]

Y. Song, J.-H. Wu, M.-A. Xue, Y.-P. Wang, D. Hu, and X.-D. Yang, “Spectral investigations of the combustion of pseudo-nanoaluminized micro-cyclic-[CH2N(NO2)]3 in a shock wave,” J. Phys. D 41, 235501 (2008).
[CrossRef]

Mater. Sci. Eng. B (1)

I. Balchev, N. Minkovski, T. Marinova, M. Shipochka, and N. Sabotinov, “Composition and structure characterization of aluminum after laser ablation,” Mater. Sci. Eng. B 135, 108–112 (2006).
[CrossRef]

Mater. Sci. Technol. (1)

D. D. Dlott, “Thinking big (and small) about energetic materials,” Mater. Sci. Technol. 22, 463–473 (2006).
[CrossRef]

Phys. Rev. B (1)

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, and Y. Lereah, “Synthesis of nanoparticles with femtosecond laser pulses,” Phys. Rev. B 69, 144119 (2004).
[CrossRef]

Propellants Explos. Pyrotech. (3)

P. Brousseau and C. J. Anderson, “Nanometric aluminum in explosives,” Propellants Explos. Pyrotech. 27, 300–306 (2002).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Characterization of a series of nitrogen-rich molecules using laser-induced breakdown spectroscopy,” Propellants Explos. Pyrotech. 35, 268–277 (2010).
[CrossRef]

Z. Ji and L. Shufen, “Aluminum oxidation in nitramine propellant,” Propellants Explos. Pyrotech. 24, 224–226(1999).
[CrossRef]

Spectrochim. Acta Part B (5)

V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, “Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta Part B 61, 999–1014 (2006).
[CrossRef]

M. Baudelet, M. Boueri, J. Yu, S. S. Mao, V. Piscitelli, X. Mao, and R. E. Russo, “Time-resolved ultraviolet laser-induced breakdown spectroscopy for organic material analysis,” Spectrochim. Acta Part B 62B, 1329–1334 (2007).
[CrossRef]

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
[CrossRef]

V. I. Babushok, F. C. DeLucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca, and A. W. Miziolek, “Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX),” Spectrochim. Acta Part B 62, 1321–1328 (2007).
[CrossRef]

V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other organic residues by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 64, 1028–1039 (2009).
[CrossRef]

Other (5)

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Y. Ralchenko, A. E. Kramida, J. Reader, and N. A. Team, “NIST atomic spectra database (version 4.1)” (National Institute of Standards and Technology, 2010), retrieved 6 Sept. 2011, http://physics.nist.gov/asd .

P. W. Cooper and S. R. Kurowski, Introduction to the Technology of Explosives (Wiley-VCH, 1996).

D. R. Lide, ed., Handbook of Chemistry and Physics, 75th ed. (CRC Press, 1994).

J. Akhavan, The Chemistry of Explosives, 2nd ed. (The Royal Society of Chemistry, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Peak atomic emission intensities as a function of gate delay (gate width 1 μs). Error bars represent 95% confidence intervals.

Fig. 2.
Fig. 2.

CN, C2, and AlO emission (shown as a function of gate delay with a gate width=1μs) increases as the plasma cools and becomes less ionized. Error bars represent 95% confidence intervals.

Fig. 3.
Fig. 3.

Selected regions of LIBS spectra for (a) Al, (b) Cu, (c) Ni, (d) Sn, and (e) Ti with (dotted red) and without (solid black) RDX residue.

Fig. 4.
Fig. 4.

Ion/neutral intensity ratios for the five high-purity substrates with and without RDX residue. The Al I 669.867 nm and Al II 466.306 nm lines were used to calculate ion/neutral ratios for Al since the 309.271 nm line was saturated. Other emission lines used for calculating ion/neutral ratios included: Cu I 296.116 nm and Cu II 227.626 nm, Ni I 343.356 nm and Ni II 243.789 nm, Sn I 333.062 nm and Sn II 533.236 nm, Ti I 373.890 nm and Ti II 462.928 nm. Error bars represent 95% confidence intervals.

Fig. 5.
Fig. 5.

Contour plots for the (a) N, C, CN, (b) N, C, O, and (c) CN, N, O emission intensities of RDX on five different metal substrates (Al, Cu, Ni, Sn, and Ti).

Fig. 6.
Fig. 6.

Excitation temperatures for RDX/Al mixture residues on Al, Cu, Ni, Sn, and Ti substrates calculated using Al I lines at 308.215 and 396.152 nm. Error bars represent 95% confidence intervals.

Fig. 7.
Fig. 7.

As the concentration of Al in the RDX/Al mixture was increased, the C2 (top) and AlO (bottom) emission from the laser-induced plasma increased on all five metal substrates, including the Al and Cu substrates.

Fig. 8.
Fig. 8.

Emission intensity for AlO (top) and O (bottom) obtained from RDX residue on Al with a single 210 mJ pulse, a 420 mJ pulse, and double pulse excitation (2×210 and 2×420mJ). Error bars represent 95% confidence intervals.

Fig. 9.
Fig. 9.

Emission intensities for the C line from the LIBS spectra of RDX residue on five different Al samples. Error bars represent 95% confidence intervals.

Tables (2)

Tables Icon

Table 1. Calculated Excitation Temperatures for Metal Substrates With and Without RDX Residue

Tables Icon

Table 2. Trace Metal Content (Including Elements Observed in LIBS Spectra) for Five Different Aluminum Samples

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

C+N+MCN+M,
C+N2CN+N,
CO+CC2+O,
CN+CC2+N,
Al+O+MAlO+M,
Al+CO2AlO+CO.
C+O+MCO+M,
CO+OCO2.
CN+OCO+N.

Metrics