Abstract

A predictive model to determine the concentration of nickel and vanadium in vacuum residues of Colombian crude oils using laser-induced breakdown spectroscopy (LIBS) and artificial neural networks (ANNs) with nodes distributed in multiple layers (multilayer perceptron) is presented. ANN inputs are intensity values in the vicinity of the emission lines 300.248, 301.200 and 305.081 nm of the Ni(I), and 309.310, 310.229, and 311.070 nm of the V(II). The effects of varying number of nodes and the initial weights and biases in the ANNs were systematically explored. Average relative error of calibration/prediction (REC/REP) and average relative standard deviation (RSD) metrics were used to evaluate the performance of the ANN in the prediction of concentrations of two elements studied here.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Sorokina, L. A. Buluchevskaya, O. V. Potapenko, and V. P. Doronin, “Conversion of nickel and vanadium porphyrins under catalytic cracking conditions,” Pet. Chem. 50, 51–55 (2010).
    [CrossRef]
  2. E. R. Cabrera, J. F. Franco, F. Mondragón, and J. J. Fernández, “Conversión de fondos de vacío de petróleo a semicoque,” Revista Energética 37, 39–51 (2007).
  3. J. L. Fabec and M. L. Ruschak, “Determination of nickel, vanadium and sulfur in crudes and heavy crude fractions by inductively coupled argon plasma/atomic emission spectrometry and flame atomic absorption spectrometry,” Anal. Chem. 57, 1853–1863 (1985).
    [CrossRef]
  4. H. M. Al-Swaidan, “The determination of lead, nickel and vanadium in Saudi Arabian crude oil by sequential injection analysis/inductively-coupled plasma mass spectrometry,” Talanta 43, 1313–1319 (1996).
    [CrossRef]
  5. C. Duyck, N. Miekeley, C. L. P. Silveira, and P. Szatmari, “Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions,” Spectrochim. Acta B 57, 1979–1990 (2002).
    [CrossRef]
  6. K. Iwasaki and K. Tanaka, “Preconcentration and X-ray fluorescence determination of vanadium, nickel and iron in residual fuel oils and in particulate material from oil-fired sources,” Anal. Chim. Acta 136, 293–299 (1982).
    [CrossRef]
  7. E. R. Denoyer and L. A. Siegel, “Determination of sulfur, nickel and vanadium in fuel and residual oils by X-ray fluorescence spectrometry,” Anal. Chim. Acta 192, 361–366 (1987).
    [CrossRef]
  8. M. Turunen, S. Peraniemi, M. Ahlgren, and H. Westerholm, “Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion,” Anal. Chim. Acta 311, 85–91 (1995).
    [CrossRef]
  9. M. Bettinelli and P. Tittarelli, “Evaluation and validation of instrumental procedures for the determination of nickel and vanadium in fuel oils,” J. Anal. At. Spectrom. 9, 805–812 (1994).
    [CrossRef]
  10. I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
    [CrossRef]
  11. O. Osibanjo, S. E. Kakulu, and S. O. Ajayi, “Analytical application of inorganic salt standards and mixed-solvent systems to trace-metal determination in petroleum crudes by atomic-absorption spectrophotometry,” Analyst 109, 127–129 (1984).
    [CrossRef]
  12. N. S. Kaki, M. M. Barbooti, S. S. Baha-Uddin, and E. B. Hassan, “Determination of Trace Metals and Their Distribution in Heavy Crude Oil Distillates (350 °C+) by Atomic Absorption Spectrophotometry,” Appl. Spectrosc. 43, 1257–1259 (1989).
    [CrossRef]
  13. O. Platteau and M. Carrillo, “Determination of metallic elements in crude oil-water emulsions by flame AAS,” Fuel 74, 761–767 (1995).
    [CrossRef]
  14. F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
    [CrossRef]
  15. T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
    [CrossRef]
  16. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 69, 1072–1078 (2006).
    [CrossRef]
  17. M. A. Gondal, M. N. Siddiqui, and M. M. Nasr, “Detection of trace metals in asphaltenes using an advanced laser-induced breakdown spectroscopy (LIBS) technique,” Energy Fuels 24, 1099–1105 (2010).
    [CrossRef]
  18. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
    [CrossRef]
  19. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochim. Acta B 65, 1–14 (2010).
    [CrossRef]
  20. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
    [CrossRef]
  21. E. Schenk and J. Almirall, “Elemental analysis of cotton by laser-induced breakdown spectroscopy,” Appl. Opt. 49, C153–C160 (2010).
    [CrossRef]
  22. P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
    [CrossRef]
  23. E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
    [CrossRef]
  24. V. Motto-Ros, A. S. Koujelev, G. R. Osinski, and A. E. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).
  25. A. Koujelev, V. Motto-Ros, D. Gratton, and A. Dudelzak, “Laser-induced breakdown spectroscopy as geological tool for field planetary analogue research,” Can. Aeronaut. Space J. 55, 97–106 (2009).
    [CrossRef]
  26. A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
    [CrossRef]
  27. S. Y. Oh, F.-Y. Yueh, and J. P. Singh, “Quantitative analysis of tin alloy combined with artificial neural network prediction,” Appl. Opt. 49, C36–C41 (2010).
    [CrossRef]
  28. I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
    [CrossRef]
  29. J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
    [CrossRef]
  30. A. Ramil, A. J. López, and A. Yañez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008).
    [CrossRef]
  31. M. Boueri, V. Motto-Ros, W. Q. Lei, Q. L. Ma, L. J. Zhen, H. P. Zeng, and J. Yu, “Identification of polymer materials using laser-induced breakdown spectroscopy combined with artificial neural network,” Appl. Spectrosc. 65, 307–314 (2011).
    [CrossRef]
  32. M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt Algorithm,” IEEE Trans. Neural Netw. 5, 989–993 (1994).
    [CrossRef]
  33. M. Otto, Chemometrics, 2nd ed. (Wiley-VCH, 2007).

2011 (1)

2010 (7)

S. Y. Oh, F.-Y. Yueh, and J. P. Singh, “Quantitative analysis of tin alloy combined with artificial neural network prediction,” Appl. Opt. 49, C36–C41 (2010).
[CrossRef]

E. Schenk and J. Almirall, “Elemental analysis of cotton by laser-induced breakdown spectroscopy,” Appl. Opt. 49, C153–C160 (2010).
[CrossRef]

A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

T. P. Sorokina, L. A. Buluchevskaya, O. V. Potapenko, and V. P. Doronin, “Conversion of nickel and vanadium porphyrins under catalytic cracking conditions,” Pet. Chem. 50, 51–55 (2010).
[CrossRef]

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

M. A. Gondal, M. N. Siddiqui, and M. M. Nasr, “Detection of trace metals in asphaltenes using an advanced laser-induced breakdown spectroscopy (LIBS) technique,” Energy Fuels 24, 1099–1105 (2010).
[CrossRef]

2009 (3)

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

A. Koujelev, V. Motto-Ros, D. Gratton, and A. Dudelzak, “Laser-induced breakdown spectroscopy as geological tool for field planetary analogue research,” Can. Aeronaut. Space J. 55, 97–106 (2009).
[CrossRef]

2008 (3)

A. Ramil, A. J. López, and A. Yañez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
[CrossRef]

V. Motto-Ros, A. S. Koujelev, G. R. Osinski, and A. E. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).

2007 (3)

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

E. R. Cabrera, J. F. Franco, F. Mondragón, and J. J. Fernández, “Conversión de fondos de vacío de petróleo a semicoque,” Revista Energética 37, 39–51 (2007).

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

2006 (2)

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 69, 1072–1078 (2006).
[CrossRef]

2002 (1)

C. Duyck, N. Miekeley, C. L. P. Silveira, and P. Szatmari, “Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions,” Spectrochim. Acta B 57, 1979–1990 (2002).
[CrossRef]

1999 (1)

1996 (1)

H. M. Al-Swaidan, “The determination of lead, nickel and vanadium in Saudi Arabian crude oil by sequential injection analysis/inductively-coupled plasma mass spectrometry,” Talanta 43, 1313–1319 (1996).
[CrossRef]

1995 (2)

M. Turunen, S. Peraniemi, M. Ahlgren, and H. Westerholm, “Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion,” Anal. Chim. Acta 311, 85–91 (1995).
[CrossRef]

O. Platteau and M. Carrillo, “Determination of metallic elements in crude oil-water emulsions by flame AAS,” Fuel 74, 761–767 (1995).
[CrossRef]

1994 (2)

M. Bettinelli and P. Tittarelli, “Evaluation and validation of instrumental procedures for the determination of nickel and vanadium in fuel oils,” J. Anal. At. Spectrom. 9, 805–812 (1994).
[CrossRef]

M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt Algorithm,” IEEE Trans. Neural Netw. 5, 989–993 (1994).
[CrossRef]

1989 (1)

1987 (1)

E. R. Denoyer and L. A. Siegel, “Determination of sulfur, nickel and vanadium in fuel and residual oils by X-ray fluorescence spectrometry,” Anal. Chim. Acta 192, 361–366 (1987).
[CrossRef]

1985 (1)

J. L. Fabec and M. L. Ruschak, “Determination of nickel, vanadium and sulfur in crudes and heavy crude fractions by inductively coupled argon plasma/atomic emission spectrometry and flame atomic absorption spectrometry,” Anal. Chem. 57, 1853–1863 (1985).
[CrossRef]

1984 (1)

O. Osibanjo, S. E. Kakulu, and S. O. Ajayi, “Analytical application of inorganic salt standards and mixed-solvent systems to trace-metal determination in petroleum crudes by atomic-absorption spectrophotometry,” Analyst 109, 127–129 (1984).
[CrossRef]

1982 (1)

K. Iwasaki and K. Tanaka, “Preconcentration and X-ray fluorescence determination of vanadium, nickel and iron in residual fuel oils and in particulate material from oil-fired sources,” Anal. Chim. Acta 136, 293–299 (1982).
[CrossRef]

1976 (1)

I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
[CrossRef]

Ahlgren, M.

M. Turunen, S. Peraniemi, M. Ahlgren, and H. Westerholm, “Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion,” Anal. Chim. Acta 311, 85–91 (1995).
[CrossRef]

Ajayi, S. O.

O. Osibanjo, S. E. Kakulu, and S. O. Ajayi, “Analytical application of inorganic salt standards and mixed-solvent systems to trace-metal determination in petroleum crudes by atomic-absorption spectrophotometry,” Analyst 109, 127–129 (1984).
[CrossRef]

Almirall, J.

Al-Swaidan, H. M.

H. M. Al-Swaidan, “The determination of lead, nickel and vanadium in Saudi Arabian crude oil by sequential injection analysis/inductively-coupled plasma mass spectrometry,” Talanta 43, 1313–1319 (1996).
[CrossRef]

Awadhesh, K. R.

I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Baha-Uddin, S. S.

Baig, M. A.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 69, 1072–1078 (2006).
[CrossRef]

Barbooti, M. M.

Bettinelli, M.

M. Bettinelli and P. Tittarelli, “Evaluation and validation of instrumental procedures for the determination of nickel and vanadium in fuel oils,” J. Anal. At. Spectrom. 9, 805–812 (1994).
[CrossRef]

Boueri, M.

Bousquet, B.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Buluchevskaya, L. A.

T. P. Sorokina, L. A. Buluchevskaya, O. V. Potapenko, and V. P. Doronin, “Conversion of nickel and vanadium porphyrins under catalytic cracking conditions,” Pet. Chem. 50, 51–55 (2010).
[CrossRef]

Cabalín, L. M.

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

Cabrera, E. R.

E. R. Cabrera, J. F. Franco, F. Mondragón, and J. J. Fernández, “Conversión de fondos de vacío de petróleo a semicoque,” Revista Energética 37, 39–51 (2007).

Canioni, L.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Carrillo, M.

O. Platteau and M. Carrillo, “Determination of metallic elements in crude oil-water emulsions by flame AAS,” Fuel 74, 761–767 (1995).
[CrossRef]

Ciucci, A.

Corsi, M.

Cristoforetti, G.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Ctvrtnícková, T.

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

Da Silva, R. M.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
[CrossRef]

Denoyer, E. R.

E. R. Denoyer and L. A. Siegel, “Determination of sulfur, nickel and vanadium in fuel and residual oils by X-ray fluorescence spectrometry,” Anal. Chim. Acta 192, 361–366 (1987).
[CrossRef]

Doronin, V. P.

T. P. Sorokina, L. A. Buluchevskaya, O. V. Potapenko, and V. P. Doronin, “Conversion of nickel and vanadium porphyrins under catalytic cracking conditions,” Pet. Chem. 50, 51–55 (2010).
[CrossRef]

Dudelzak, A.

A. Koujelev, V. Motto-Ros, D. Gratton, and A. Dudelzak, “Laser-induced breakdown spectroscopy as geological tool for field planetary analogue research,” Can. Aeronaut. Space J. 55, 97–106 (2009).
[CrossRef]

Dudelzak, A. E.

V. Motto-Ros, A. S. Koujelev, G. R. Osinski, and A. E. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).

Duyck, C.

C. Duyck, N. Miekeley, C. L. P. Silveira, and P. Szatmari, “Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions,” Spectrochim. Acta B 57, 1979–1990 (2002).
[CrossRef]

Fabec, J. L.

J. L. Fabec and M. L. Ruschak, “Determination of nickel, vanadium and sulfur in crudes and heavy crude fractions by inductively coupled argon plasma/atomic emission spectrometry and flame atomic absorption spectrometry,” Anal. Chem. 57, 1853–1863 (1985).
[CrossRef]

Fernández, J. J.

E. R. Cabrera, J. F. Franco, F. Mondragón, and J. J. Fernández, “Conversión de fondos de vacío de petróleo a semicoque,” Revista Energética 37, 39–51 (2007).

Ferreira, E. C.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
[CrossRef]

Ferreira, E. J.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
[CrossRef]

Fortes, F. J.

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

Franco, J. F.

E. R. Cabrera, J. F. Franco, F. Mondragón, and J. J. Fernández, “Conversión de fondos de vacío de petróleo a semicoque,” Revista Energética 37, 39–51 (2007).

Gondal, M. A.

M. A. Gondal, M. N. Siddiqui, and M. M. Nasr, “Detection of trace metals in asphaltenes using an advanced laser-induced breakdown spectroscopy (LIBS) technique,” Energy Fuels 24, 1099–1105 (2010).
[CrossRef]

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 69, 1072–1078 (2006).
[CrossRef]

Gornushkin, I.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Gratton, D.

A. Koujelev, V. Motto-Ros, D. Gratton, and A. Dudelzak, “Laser-induced breakdown spectroscopy as geological tool for field planetary analogue research,” Can. Aeronaut. Space J. 55, 97–106 (2009).
[CrossRef]

Hagan, M. T.

M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt Algorithm,” IEEE Trans. Neural Netw. 5, 989–993 (1994).
[CrossRef]

Hassan, E. B.

Hussain, T.

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 69, 1072–1078 (2006).
[CrossRef]

Inakollu, P.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Iwasaki, K.

K. Iwasaki and K. Tanaka, “Preconcentration and X-ray fluorescence determination of vanadium, nickel and iron in residual fuel oils and in particulate material from oil-fired sources,” Anal. Chim. Acta 136, 293–299 (1982).
[CrossRef]

Kaki, N. S.

Kakulu, S. E.

O. Osibanjo, S. E. Kakulu, and S. O. Ajayi, “Analytical application of inorganic salt standards and mixed-solvent systems to trace-metal determination in petroleum crudes by atomic-absorption spectrophotometry,” Analyst 109, 127–129 (1984).
[CrossRef]

Kolihova, D.

I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
[CrossRef]

Koujelev, A.

A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
[CrossRef]

A. Koujelev, V. Motto-Ros, D. Gratton, and A. Dudelzak, “Laser-induced breakdown spectroscopy as geological tool for field planetary analogue research,” Can. Aeronaut. Space J. 55, 97–106 (2009).
[CrossRef]

Koujelev, A. S.

V. Motto-Ros, A. S. Koujelev, G. R. Osinski, and A. E. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).

Lang, I.

I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
[CrossRef]

Laserna, J. J.

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

Laville, S.

A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
[CrossRef]

Le Hecho, I.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Legnaioli, S.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Lei, W. Q.

López, A. J.

A. Ramil, A. J. López, and A. Yañez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008).
[CrossRef]

Lui, S. L.

A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
[CrossRef]

Ma, Q. L.

Martin-Neto, L.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
[CrossRef]

Mateo, M. P.

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

Menhaj, M. B.

M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt Algorithm,” IEEE Trans. Neural Netw. 5, 989–993 (1994).
[CrossRef]

Miekeley, N.

C. Duyck, N. Miekeley, C. L. P. Silveira, and P. Szatmari, “Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions,” Spectrochim. Acta B 57, 1979–1990 (2002).
[CrossRef]

Milori, D. M. B. P.

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
[CrossRef]

Mondragón, F.

E. R. Cabrera, J. F. Franco, F. Mondragón, and J. J. Fernández, “Conversión de fondos de vacío de petróleo a semicoque,” Revista Energética 37, 39–51 (2007).

Motto-Ros, V.

M. Boueri, V. Motto-Ros, W. Q. Lei, Q. L. Ma, L. J. Zhen, H. P. Zeng, and J. Yu, “Identification of polymer materials using laser-induced breakdown spectroscopy combined with artificial neural network,” Appl. Spectrosc. 65, 307–314 (2011).
[CrossRef]

A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
[CrossRef]

A. Koujelev, V. Motto-Ros, D. Gratton, and A. Dudelzak, “Laser-induced breakdown spectroscopy as geological tool for field planetary analogue research,” Can. Aeronaut. Space J. 55, 97–106 (2009).
[CrossRef]

V. Motto-Ros, A. S. Koujelev, G. R. Osinski, and A. E. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).

Mueller, M.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Nasr, M. M.

M. A. Gondal, M. N. Siddiqui, and M. M. Nasr, “Detection of trace metals in asphaltenes using an advanced laser-induced breakdown spectroscopy (LIBS) technique,” Energy Fuels 24, 1099–1105 (2010).
[CrossRef]

Nicolas, G.

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

Oh, S. Y.

Osibanjo, O.

O. Osibanjo, S. E. Kakulu, and S. O. Ajayi, “Analytical application of inorganic salt standards and mixed-solvent systems to trace-metal determination in petroleum crudes by atomic-absorption spectrophotometry,” Analyst 109, 127–129 (1984).
[CrossRef]

Osinski, G. R.

V. Motto-Ros, A. S. Koujelev, G. R. Osinski, and A. E. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).

Otto, M.

M. Otto, Chemometrics, 2nd ed. (Wiley-VCH, 2007).

Palleschi, V.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Panne, U.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Peraniemi, S.

M. Turunen, S. Peraniemi, M. Ahlgren, and H. Westerholm, “Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion,” Anal. Chim. Acta 311, 85–91 (1995).
[CrossRef]

Philip, T.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Platteau, O.

O. Platteau and M. Carrillo, “Determination of metallic elements in crude oil-water emulsions by flame AAS,” Fuel 74, 761–767 (1995).
[CrossRef]

Potapenko, O. V.

T. P. Sorokina, L. A. Buluchevskaya, O. V. Potapenko, and V. P. Doronin, “Conversion of nickel and vanadium porphyrins under catalytic cracking conditions,” Pet. Chem. 50, 51–55 (2010).
[CrossRef]

Potin-Gautier, M.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Prasanthi, I.

I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Rai, A. K.

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Ramil, A.

A. Ramil, A. J. López, and A. Yañez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008).
[CrossRef]

Rastelli, S.

Ruschak, M. L.

J. L. Fabec and M. L. Ruschak, “Determination of nickel, vanadium and sulfur in crudes and heavy crude fractions by inductively coupled argon plasma/atomic emission spectrometry and flame atomic absorption spectrometry,” Anal. Chem. 57, 1853–1863 (1985).
[CrossRef]

Sabsabi, M.

A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
[CrossRef]

Salvetti, A.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Sarger, L.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Schenk, E.

Sebor, G.

I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
[CrossRef]

Siddiqui, M. N.

M. A. Gondal, M. N. Siddiqui, and M. M. Nasr, “Detection of trace metals in asphaltenes using an advanced laser-induced breakdown spectroscopy (LIBS) technique,” Energy Fuels 24, 1099–1105 (2010).
[CrossRef]

Siegel, L. A.

E. R. Denoyer and L. A. Siegel, “Determination of sulfur, nickel and vanadium in fuel and residual oils by X-ray fluorescence spectrometry,” Anal. Chim. Acta 192, 361–366 (1987).
[CrossRef]

Silveira, C. L. P.

C. Duyck, N. Miekeley, C. L. P. Silveira, and P. Szatmari, “Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions,” Spectrochim. Acta B 57, 1979–1990 (2002).
[CrossRef]

Singh, J. P.

S. Y. Oh, F.-Y. Yueh, and J. P. Singh, “Quantitative analysis of tin alloy combined with artificial neural network prediction,” Appl. Opt. 49, C36–C41 (2010).
[CrossRef]

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Sirven, J. B.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Sorokina, T. P.

T. P. Sorokina, L. A. Buluchevskaya, O. V. Potapenko, and V. P. Doronin, “Conversion of nickel and vanadium porphyrins under catalytic cracking conditions,” Pet. Chem. 50, 51–55 (2010).
[CrossRef]

Sychra, V.

I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
[CrossRef]

Szatmari, P.

C. Duyck, N. Miekeley, C. L. P. Silveira, and P. Szatmari, “Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions,” Spectrochim. Acta B 57, 1979–1990 (2002).
[CrossRef]

Tanaka, K.

K. Iwasaki and K. Tanaka, “Preconcentration and X-ray fluorescence determination of vanadium, nickel and iron in residual fuel oils and in particulate material from oil-fired sources,” Anal. Chim. Acta 136, 293–299 (1982).
[CrossRef]

Tellier, S.

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Thomas, P.

I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Tittarelli, P.

M. Bettinelli and P. Tittarelli, “Evaluation and validation of instrumental procedures for the determination of nickel and vanadium in fuel oils,” J. Anal. At. Spectrom. 9, 805–812 (1994).
[CrossRef]

Tognoni, E.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Turunen, M.

M. Turunen, S. Peraniemi, M. Ahlgren, and H. Westerholm, “Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion,” Anal. Chim. Acta 311, 85–91 (1995).
[CrossRef]

Weisser, O.

I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
[CrossRef]

Westerholm, H.

M. Turunen, S. Peraniemi, M. Ahlgren, and H. Westerholm, “Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion,” Anal. Chim. Acta 311, 85–91 (1995).
[CrossRef]

Yamani, Z. H.

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 69, 1072–1078 (2006).
[CrossRef]

Yañez, A.

A. Ramil, A. J. López, and A. Yañez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008).
[CrossRef]

Yu, J.

Yueh, F.-Y.

S. Y. Oh, F.-Y. Yueh, and J. P. Singh, “Quantitative analysis of tin alloy combined with artificial neural network prediction,” Appl. Opt. 49, C36–C41 (2010).
[CrossRef]

I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

Zeng, H. P.

Zhen, L. J.

Anal. Bioanal. Chem. (1)

J. B. Sirven, B. Bousquet, L. Canioni, L. Sarger, S. Tellier, M. Potin-Gautier, and I. Le Hecho, “Qualitative and quantitative investigation of chromium-polluted soils by laser-induced breakdown spectroscopy combined with neural networks analysis,” Anal. Bioanal. Chem. 385, 256–262 (2006).
[CrossRef]

Anal. Chem. (1)

J. L. Fabec and M. L. Ruschak, “Determination of nickel, vanadium and sulfur in crudes and heavy crude fractions by inductively coupled argon plasma/atomic emission spectrometry and flame atomic absorption spectrometry,” Anal. Chem. 57, 1853–1863 (1985).
[CrossRef]

Anal. Chim. Acta (5)

K. Iwasaki and K. Tanaka, “Preconcentration and X-ray fluorescence determination of vanadium, nickel and iron in residual fuel oils and in particulate material from oil-fired sources,” Anal. Chim. Acta 136, 293–299 (1982).
[CrossRef]

E. R. Denoyer and L. A. Siegel, “Determination of sulfur, nickel and vanadium in fuel and residual oils by X-ray fluorescence spectrometry,” Anal. Chim. Acta 192, 361–366 (1987).
[CrossRef]

M. Turunen, S. Peraniemi, M. Ahlgren, and H. Westerholm, “Determination of trace elements in heavy oil samples by graphite furnace and cold vapour atomic absorption spectrometry after acid digestion,” Anal. Chim. Acta 311, 85–91 (1995).
[CrossRef]

I. Lang, G. Sebor, V. Sychra, D. Kolihova, and O. Weisser, “The determination of metals in petroleum samples by atomic absorption spectrometry: Part II. Determination of nickel,” Anal. Chim. Acta 84, 299–305 (1976).
[CrossRef]

F. J. Fortes, T. Ctvrtnícková, M. P. Mateo, L. M. Cabalín, G. Nicolas, and J. J. Laserna, “Spectrochemical study for the in situ detection of oil spill residues using laser-induced breakdown spectroscopy,” Anal. Chim. Acta 683, 52–57 (2010).
[CrossRef]

Analyst (1)

O. Osibanjo, S. E. Kakulu, and S. O. Ajayi, “Analytical application of inorganic salt standards and mixed-solvent systems to trace-metal determination in petroleum crudes by atomic-absorption spectrophotometry,” Analyst 109, 127–129 (1984).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

A. Ramil, A. J. López, and A. Yañez, “Application of artificial neural networks for the rapid classification of archaeological ceramics by means of laser induced breakdown spectroscopy (LIBS),” Appl. Phys. A 92, 197–202 (2008).
[CrossRef]

Appl. Spectrosc. (3)

Can. Aeronaut. Space J. (1)

A. Koujelev, V. Motto-Ros, D. Gratton, and A. Dudelzak, “Laser-induced breakdown spectroscopy as geological tool for field planetary analogue research,” Can. Aeronaut. Space J. 55, 97–106 (2009).
[CrossRef]

Energy Fuels (1)

M. A. Gondal, M. N. Siddiqui, and M. M. Nasr, “Detection of trace metals in asphaltenes using an advanced laser-induced breakdown spectroscopy (LIBS) technique,” Energy Fuels 24, 1099–1105 (2010).
[CrossRef]

Environ. Monit. Assess. (1)

T. Hussain and M. A. Gondal, “Monitoring and assessment of toxic metals in Gulf war oil spill contaminated soil using laser-induced breakdown spectroscopy,” Environ. Monit. Assess. 136, 391–399 (2007).
[CrossRef]

Fuel (1)

O. Platteau and M. Carrillo, “Determination of metallic elements in crude oil-water emulsions by flame AAS,” Fuel 74, 761–767 (1995).
[CrossRef]

IEEE Trans. Neural Netw. (1)

M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the Marquardt Algorithm,” IEEE Trans. Neural Netw. 5, 989–993 (1994).
[CrossRef]

J. Anal. At. Spectrom. (1)

M. Bettinelli and P. Tittarelli, “Evaluation and validation of instrumental procedures for the determination of nickel and vanadium in fuel oils,” J. Anal. At. Spectrom. 9, 805–812 (1994).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub. (1)

V. Motto-Ros, A. S. Koujelev, G. R. Osinski, and A. E. Dudelzak, “Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks,” J. Eur. Opt. Soc. Rapid Pub. 3, 08011 (2008).

Pet. Chem. (1)

T. P. Sorokina, L. A. Buluchevskaya, O. V. Potapenko, and V. P. Doronin, “Conversion of nickel and vanadium porphyrins under catalytic cracking conditions,” Pet. Chem. 50, 51–55 (2010).
[CrossRef]

Planet. Space Sci. (1)

A. Koujelev, M. Sabsabi, V. Motto-Ros, S. Laville, and S. L. Lui, “Laser-induced breakdown spectroscopy with artificial neural network processing for material identification,” Planet. Space Sci. 58, 682–690 (2010).
[CrossRef]

Revista Energética (1)

E. R. Cabrera, J. F. Franco, F. Mondragón, and J. J. Fernández, “Conversión de fondos de vacío de petróleo a semicoque,” Revista Energética 37, 39–51 (2007).

Spectrochim. Acta B (6)

C. Duyck, N. Miekeley, C. L. P. Silveira, and P. Szatmari, “Trace element determination in crude oil and its fractions by inductively coupled plasma mass spectrometry using ultrasonic nebulization of toluene solutions,” Spectrochim. Acta B 57, 1979–1990 (2002).
[CrossRef]

P. Inakollu, T. Philip, A. K. Rai, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

E. C. Ferreira, D. M. B. P. Milori, E. J. Ferreira, R. M. Da Silva, and L. Martin-Neto, “Artificial neural network for Cu quantitative determination in soil using a portable laser induced breakdown spectroscopy system,” Spectrochim. Acta B 63, 1216–1220 (2008).
[CrossRef]

I. Prasanthi, P. Thomas, K. R. Awadhesh, F.-Y. Yueh, and J. P. Singh, “A comparative study of laser induced breakdown spectroscopy analysis for element concentrations in aluminum alloy using artificial neural networks and calibration methods,” Spectrochim. Acta B 64, 99–104 (2009).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: State of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Talanta (2)

M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, “Detection of heavy metals in Arabian crude oil residue using laser induced breakdown spectroscopy,” Talanta 69, 1072–1078 (2006).
[CrossRef]

H. M. Al-Swaidan, “The determination of lead, nickel and vanadium in Saudi Arabian crude oil by sequential injection analysis/inductively-coupled plasma mass spectrometry,” Talanta 43, 1313–1319 (1996).
[CrossRef]

Other (1)

M. Otto, Chemometrics, 2nd ed. (Wiley-VCH, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Typical LIBS spectrum from sample M-04.

Fig. 3.
Fig. 3.

Predicted concentrations by calibration curve method versus concentrations determined by ICP-AES. (a) Ni and (b) V.

Fig. 4.
Fig. 4.

Predicted concentrations by artificial neural networks model versus concentrations determined by ICP-AES. ANN input: Ni and V intensities (a) and (c). Ni and V areas. (b) and (d).

Tables (5)

Tables Icon

Table 1. Concentrations of Ni and V in Vacuum Residues Samples by ICP-AES

Tables Icon

Table 2. Performance Metrics for Some Artificial Neural Networks Scanned Predicting Ni Concentrations. Initial Weights and Biases Are Unaltered

Tables Icon

Table 3. Performance Metrics for Some Artificial Neural Networks Scanned Predicting V Concentrations. Initial Weights and Biases Are Unaltered

Tables Icon

Table 4. Effect of Varying the Initial Weights and Biases With Number of Nodes in Hidden Layer of ANN Unaltered. Models to Assess Concentration of Ni

Tables Icon

Table 5. Effect of Varying the Initial Weights and Biases with Number of Nodes in Hidden Layer of ANN Unaltered. Models to Assess Concentration of V

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

REC(%)=100Ncali=1Ncal|c^i-cici|,
REP(%)=100Nti=1Nt|c^i-cici|,
RSD(%)=100Nconck=1Nconcσckck,

Metrics