Abstract

A new methodology is presented to create two-dimensional (2D) and three-dimensional (3D) tomographic reconstructions of mesospheric airglow layer structure using two-station all-sky image measurements. A fanning technique is presented that produces a series of cross-sectional 2D reconstructions, which are combined to create a 3D mapping of the airglow volume. The imaging configuration is discussed and the inherent challenges of using limited-angle data in tomographic reconstructions have been analyzed using artificially generated imaging objects. An iterative reconstruction method, the partially constrained algebraic reconstruction technique (PCART), was used in conjunction with a priori information of the airglow emission profile to constrain the height of the imaged region, thereby reducing the indeterminacy of the inverse problem. Synthetic projection data were acquired from the imaging objects and the forward problem to validate the tomographic method and to demonstrate the ability of this technique to accurately reconstruct information using only two ground-based sites. Reconstructions of the OH airglow layer were created using data recorded by all-sky CCD cameras located at Bear Lake Observatory, Utah, and at Star Valley, Wyoming, with an optimal site separation of 100km. The ability to extend powerful 2D and 3D tomographic methods to two-station ground-based measurements offers obvious practical advantages for new measurement programs. The importance and applications of mesospheric tomographic reconstructions in airglow studies, as well as the need for future measurements and continued development of techniques of this type, are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Y. Khomich, A. I. Semenov, and N. N. Shefov, “Introduction,” in Airglow as an Indicator of Upper Atmospheric Structure and Dynamics (Springer, 2008), pp. 1–5.
  2. S. Chakrabarti, “Ground based spectroscopic studies of sunlit airglow and aurora,” J. Atmos. Sol. Terr. Phys. 60, 1403–1423 (1998).
    [CrossRef]
  3. D. M. Hunten, “Spectroscopic studies of the twilight airglow,” Space Sci. Rev. 6, 493–573 (1967).
    [CrossRef]
  4. W. E. Sharp, J. W. F. Lloyd, and S. M. Silverman, “Zenith skylight intensity and color during the total solar eclipse of 20 July 1963,” Appl. Opt. 5, 787–792 (1966).
    [CrossRef]
  5. X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007).
    [CrossRef]
  6. K. Kita, N. Iwagami, and T. Ogawa, “Rocket observations of oxygen night airglows: excitation mechanisms and oxygen atom concentration,” Planet. Space Sci. 40, 1269–1288 (1992).
    [CrossRef]
  7. G. Schmidtke, P. Seidl, and C. Wita, “Airglow-solar spectrometer instrument (20700 nm) aboard the San Marco D/L satellite,” Appl. Opt. 24, 3206–3213 (1985).
    [CrossRef]
  8. I. C. McDade and E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
    [CrossRef]
  9. I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
    [CrossRef]
  10. I. C. McDade and E. J. Llewellyn, “Satellite airglow limb tomography: methods for recovering structured emission rates in the mesospheric airglow layer,” Can. J. Phys. 71, 552–563 (1993).
    [CrossRef]
  11. E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).
  12. D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
    [CrossRef]
  13. D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009).
    [CrossRef]
  14. P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
    [CrossRef]
  15. L. L. Cogger and C. D. Anger, “The OI 5577 Å airglow experiment on the ISIS 2 satellite,” J. Atmos. Terr. Phys. 35, 2081–2084 (1973).
    [CrossRef]
  16. A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
    [CrossRef]
  17. C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
    [CrossRef]
  18. D. A. Degenstein, E. J. Llewellyn, and N. D. Lloyd, “Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager,” Can. J. Phys. 82, 501–515(2004).
    [CrossRef]
  19. Z. Wang and S. Chen, “Effective solution algorithm for tomographic inversion of volume emission rate from satellite-based limb measurement,” Chin. Geograph. Sci. 21, 554–562 (2011).
    [CrossRef]
  20. P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
    [CrossRef]
  21. M. J. Taylor, “A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere,” Adv. Space Res. 19, 667–676 (1997).
    [CrossRef]
  22. T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).
  23. T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998).
    [CrossRef]
  24. T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000).
    [CrossRef]
  25. D. S. Anderson, G. Swenson, F. Kamalabadi, and A. Liu, “Tomographic imaging of airglow from airborne spectroscopic measurments,” Appl. Opt. 47, 2510–2519 (2008).
    [CrossRef]
  26. J. Semeter and M. Mendillo, “A nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105–1116 (1997).
    [CrossRef]
  27. D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distributions of the hydroxyl airglow,” Phys. Scr. 37, 611 (1988).
    [CrossRef]
  28. M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
    [CrossRef]
  29. R. A. Bernstein, W. L. Freedman, and B. F. Madore, “The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. I. Results,” Astrophys. J. 571, 56–84 (2002).
    [CrossRef]
  30. E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
    [CrossRef]
  31. B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
    [CrossRef]
  32. Y. M. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).
    [CrossRef]
  33. M. J. Taylor, M. B. Bishop, and V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833 (1995).
    [CrossRef]
  34. F. J. Garcia, M. J. Taylor, and M. C. Kelley, “Two-dimensional spectral analysis of mesospheric airglow image data,” Appl. Opt. 36, 7374–7385 (1997).
    [CrossRef]
  35. D. Pautet and G. Moreels, “Ground-based satellite-type images of the upper-atmosphere emissive layer,” Appl. Opt. 41, 823–831 (2002).
    [CrossRef]
  36. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–68, 275–292.
  37. D. S. Anderson, F. Kamalabadi, and G. R. Swenson, “Estimation of three-dimensional atmospheric wave parameters from ground-based spectroscopic airglow image data,” IEEE Trans. Geosci. Remote Sens. 47, 2427–2435 (2009).
    [CrossRef]
  38. J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004).
    [CrossRef]
  39. S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
    [CrossRef]

2011 (2)

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

Z. Wang and S. Chen, “Effective solution algorithm for tomographic inversion of volume emission rate from satellite-based limb measurement,” Chin. Geograph. Sci. 21, 554–562 (2011).
[CrossRef]

2010 (1)

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

2009 (2)

D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009).
[CrossRef]

D. S. Anderson, F. Kamalabadi, and G. R. Swenson, “Estimation of three-dimensional atmospheric wave parameters from ground-based spectroscopic airglow image data,” IEEE Trans. Geosci. Remote Sens. 47, 2427–2435 (2009).
[CrossRef]

2008 (2)

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

D. S. Anderson, G. Swenson, F. Kamalabadi, and A. Liu, “Tomographic imaging of airglow from airborne spectroscopic measurments,” Appl. Opt. 47, 2510–2519 (2008).
[CrossRef]

2007 (1)

X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007).
[CrossRef]

2005 (2)

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

Y. M. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).
[CrossRef]

2004 (2)

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004).
[CrossRef]

D. A. Degenstein, E. J. Llewellyn, and N. D. Lloyd, “Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager,” Can. J. Phys. 82, 501–515(2004).
[CrossRef]

2002 (2)

R. A. Bernstein, W. L. Freedman, and B. F. Madore, “The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. I. Results,” Astrophys. J. 571, 56–84 (2002).
[CrossRef]

D. Pautet and G. Moreels, “Ground-based satellite-type images of the upper-atmosphere emissive layer,” Appl. Opt. 41, 823–831 (2002).
[CrossRef]

2001 (1)

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

2000 (1)

T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000).
[CrossRef]

1998 (2)

T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998).
[CrossRef]

S. Chakrabarti, “Ground based spectroscopic studies of sunlit airglow and aurora,” J. Atmos. Sol. Terr. Phys. 60, 1403–1423 (1998).
[CrossRef]

1997 (5)

M. J. Taylor, “A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere,” Adv. Space Res. 19, 667–676 (1997).
[CrossRef]

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

J. Semeter and M. Mendillo, “A nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105–1116 (1997).
[CrossRef]

F. J. Garcia, M. J. Taylor, and M. C. Kelley, “Two-dimensional spectral analysis of mesospheric airglow image data,” Appl. Opt. 36, 7374–7385 (1997).
[CrossRef]

S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
[CrossRef]

1996 (1)

T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).

1995 (2)

M. J. Taylor, M. B. Bishop, and V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833 (1995).
[CrossRef]

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

1994 (1)

E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).

1993 (1)

I. C. McDade and E. J. Llewellyn, “Satellite airglow limb tomography: methods for recovering structured emission rates in the mesospheric airglow layer,” Can. J. Phys. 71, 552–563 (1993).
[CrossRef]

1992 (1)

K. Kita, N. Iwagami, and T. Ogawa, “Rocket observations of oxygen night airglows: excitation mechanisms and oxygen atom concentration,” Planet. Space Sci. 40, 1269–1288 (1992).
[CrossRef]

1991 (2)

I. C. McDade and E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

1988 (1)

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distributions of the hydroxyl airglow,” Phys. Scr. 37, 611 (1988).
[CrossRef]

1987 (1)

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

1985 (1)

1973 (1)

L. L. Cogger and C. D. Anger, “The OI 5577 Å airglow experiment on the ISIS 2 satellite,” J. Atmos. Terr. Phys. 35, 2081–2084 (1973).
[CrossRef]

1967 (1)

D. M. Hunten, “Spectroscopic studies of the twilight airglow,” Space Sci. Rev. 6, 493–573 (1967).
[CrossRef]

1966 (1)

Adler-Golden, S.

S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
[CrossRef]

Anderson, D. S.

D. S. Anderson, F. Kamalabadi, and G. R. Swenson, “Estimation of three-dimensional atmospheric wave parameters from ground-based spectroscopic airglow image data,” IEEE Trans. Geosci. Remote Sens. 47, 2427–2435 (2009).
[CrossRef]

D. S. Anderson, G. Swenson, F. Kamalabadi, and A. Liu, “Tomographic imaging of airglow from airborne spectroscopic measurments,” Appl. Opt. 47, 2510–2519 (2008).
[CrossRef]

Anderson, E. R.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Anger, C. D.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

L. L. Cogger and C. D. Anger, “The OI 5577 Å airglow experiment on the ISIS 2 satellite,” J. Atmos. Terr. Phys. 35, 2081–2084 (1973).
[CrossRef]

Aruliah, A. L.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Aso, T.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Baker, D. J.

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distributions of the hydroxyl airglow,” Phys. Scr. 37, 611 (1988).
[CrossRef]

Bernstein, R. A.

R. A. Bernstein, W. L. Freedman, and B. F. Madore, “The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. I. Results,” Astrophys. J. 571, 56–84 (2002).
[CrossRef]

Bishop, M. B.

M. J. Taylor, M. B. Bishop, and V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833 (1995).
[CrossRef]

Bourassa, A. E.

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009).
[CrossRef]

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

Brändström, B. U. E.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Broadfoot, A. L.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Brooks, W. S. C.

E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).

Brown, C.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Chakrabarti, S.

S. Chakrabarti, “Ground based spectroscopic studies of sunlit airglow and aurora,” J. Atmos. Sol. Terr. Phys. 60, 1403–1423 (1998).
[CrossRef]

Chen, S.

Z. Wang and S. Chen, “Effective solution algorithm for tomographic inversion of volume emission rate from satellite-based limb measurement,” Chin. Geograph. Sci. 21, 554–562 (2011).
[CrossRef]

Chu, X.

Y. M. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).
[CrossRef]

Cogger, L. L.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

L. L. Cogger and C. D. Anger, “The OI 5577 Å airglow experiment on the ISIS 2 satellite,” J. Atmos. Terr. Phys. 35, 2081–2084 (1973).
[CrossRef]

Creutzberg, F.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Degenstein, D. A.

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009).
[CrossRef]

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

D. A. Degenstein, E. J. Llewellyn, and N. D. Lloyd, “Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager,” Can. J. Phys. 82, 501–515(2004).
[CrossRef]

Ejiri, M.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Freedman, W. L.

R. A. Bernstein, W. L. Freedman, and B. F. Madore, “The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. I. Results,” Astrophys. J. 571, 56–84 (2002).
[CrossRef]

Fritts, D. C.

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

Fujii, J.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004).
[CrossRef]

Garcia, F. J.

Garcia-Comas, M.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Gardner, J. A.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Gattinger, R. L.

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Gladstone, R.

X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007).
[CrossRef]

Gordley, L. L.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Gunapala, S.

X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007).
[CrossRef]

Gustafsson, G.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Gustavsson, B.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Harris, F. R.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Haslett, J. W.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Hatfield, D. B.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Honary, F.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Hunten, D. M.

D. M. Hunten, “Spectroscopic studies of the twilight airglow,” Space Sci. Rev. 6, 493–573 (1967).
[CrossRef]

Isler, J. R.

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

Iwagami, N.

K. Kita, N. Iwagami, and T. Ogawa, “Rocket observations of oxygen night airglows: excitation mechanisms and oxygen atom concentration,” Planet. Space Sci. 40, 1269–1288 (1992).
[CrossRef]

Johnson, D. W.

E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).

Jones, A. V.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Kaila, K.

T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–68, 275–292.

Kamalabadi, F.

D. S. Anderson, F. Kamalabadi, and G. R. Swenson, “Estimation of three-dimensional atmospheric wave parameters from ground-based spectroscopic airglow image data,” IEEE Trans. Geosci. Remote Sens. 47, 2427–2435 (2009).
[CrossRef]

D. S. Anderson, G. Swenson, F. Kamalabadi, and A. Liu, “Tomographic imaging of airglow from airborne spectroscopic measurments,” Appl. Opt. 47, 2510–2519 (2008).
[CrossRef]

Kelley, M. C.

Khomich, V. Y.

V. Y. Khomich, A. I. Semenov, and N. N. Shefov, “Introduction,” in Airglow as an Indicator of Upper Atmospheric Structure and Dynamics (Springer, 2008), pp. 1–5.

King, R. A.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Kita, K.

K. Kita, N. Iwagami, and T. Ogawa, “Rocket observations of oxygen night airglows: excitation mechanisms and oxygen atom concentration,” Planet. Space Sci. 40, 1269–1288 (1992).
[CrossRef]

Knecht, D. J.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Krueger, D.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Lehtinen, M.

T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).

Lehtinen, M. S.

T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000).
[CrossRef]

T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998).
[CrossRef]

Leyser, T. B.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Lingenfelser, G. S.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Liu, A.

Llewellyn, E. J.

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009).
[CrossRef]

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

D. A. Degenstein, E. J. Llewellyn, and N. D. Lloyd, “Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager,” Can. J. Phys. 82, 501–515(2004).
[CrossRef]

E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).

I. C. McDade and E. J. Llewellyn, “Satellite airglow limb tomography: methods for recovering structured emission rates in the mesospheric airglow layer,” Can. J. Phys. 71, 552–563 (1993).
[CrossRef]

I. C. McDade and E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Lloyd, J. W. F.

Lloyd, N. D.

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

D. A. Degenstein, E. J. Llewellyn, and N. D. Lloyd, “Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager,” Can. J. Phys. 82, 501–515(2004).
[CrossRef]

I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

Lopez-Gonzalez, M. J.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Lopez-Puertas, M.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Lummerzheim, D.

X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007).
[CrossRef]

Madore, B. F.

R. A. Bernstein, W. L. Freedman, and B. F. Madore, “The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. I. Results,” Astrophys. J. 571, 56–84 (2002).
[CrossRef]

Markkanen, M.

T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998).
[CrossRef]

T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).

Marple, S.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Marshall, B. T.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Martin-Torres, J.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

McConnell, D. J.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

McDade, I. C.

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).

I. C. McDade and E. J. Llewellyn, “Satellite airglow limb tomography: methods for recovering structured emission rates in the mesospheric airglow layer,” Can. J. Phys. 71, 552–563 (1993).
[CrossRef]

I. C. McDade and E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

McEwen, D. J.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Mendillo, M.

J. Semeter and M. Mendillo, “A nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105–1116 (1997).
[CrossRef]

Mlynczak, M. G.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Moreels, G.

Murad, E.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Murphree, J. S.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Nakamura, T.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004).
[CrossRef]

Nygrén, T.

T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000).
[CrossRef]

T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998).
[CrossRef]

T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).

Ogawa, T.

K. Kita, N. Iwagami, and T. Ogawa, “Rocket observations of oxygen night airglows: excitation mechanisms and oxygen atom concentration,” Planet. Space Sci. 40, 1269–1288 (1992).
[CrossRef]

Pautet, D.

Pike, C. P.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Remsberg, E. E.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Richardson, E. H.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Rietveld, M. T.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Rostoker, G.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Roth, C. Z.

D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009).
[CrossRef]

Russell, J. M.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Sandel, B. R.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Schmidtke, G.

Seidl, P.

Semenov, A. I.

V. Y. Khomich, A. I. Semenov, and N. N. Shefov, “Introduction,” in Airglow as an Indicator of Upper Atmospheric Structure and Dynamics (Springer, 2008), pp. 1–5.

Semeter, J.

J. Semeter and M. Mendillo, “A nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105–1116 (1997).
[CrossRef]

Sergienko, T.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Sharp, W. E.

She, C.-Y.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Sheese, P. E.

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

Shefov, N. N.

V. Y. Khomich, A. I. Semenov, and N. N. Shefov, “Introduction,” in Airglow as an Indicator of Upper Atmospheric Structure and Dynamics (Springer, 2008), pp. 1–5.

Shepherd, G. G.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Shiokawa, K.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004).
[CrossRef]

Silverman, S. M.

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–68, 275–292.

Smith, A. K.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Stair, A. T.

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distributions of the hydroxyl airglow,” Phys. Scr. 37, 611 (1988).
[CrossRef]

Steen, Å.

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Stone, T. C.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Swenson, G.

Swenson, G. R.

D. S. Anderson, F. Kamalabadi, and G. R. Swenson, “Estimation of three-dimensional atmospheric wave parameters from ground-based spectroscopic airglow image data,” IEEE Trans. Geosci. Remote Sens. 47, 2427–2435 (2009).
[CrossRef]

T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000).
[CrossRef]

Taylor, M. J.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Y. M. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).
[CrossRef]

T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000).
[CrossRef]

T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998).
[CrossRef]

F. J. Garcia, M. J. Taylor, and M. C. Kelley, “Two-dimensional spectral analysis of mesospheric airglow image data,” Appl. Opt. 36, 7374–7385 (1997).
[CrossRef]

M. J. Taylor, “A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere,” Adv. Space Res. 19, 667–676 (1997).
[CrossRef]

M. J. Taylor, M. B. Bishop, and V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833 (1995).
[CrossRef]

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

Taylor, V.

M. J. Taylor, M. B. Bishop, and V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833 (1995).
[CrossRef]

Thompson, R. E.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Tsuda, T.

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004).
[CrossRef]

Venkatesan, D.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Viereck, R. A.

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

Wallis, D. D.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Wang, Z.

Z. Wang and S. Chen, “Effective solution algorithm for tomographic inversion of volume emission rate from satellite-based limb measurement,” Chin. Geograph. Sci. 21, 554–562 (2011).
[CrossRef]

Wiensz, J. T.

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

Wita, C.

Witt, G.

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

Zhao, Y.

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

Zhao, Y. M.

Y. M. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).
[CrossRef]

Zhou, X. Y.

X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007).
[CrossRef]

Adv. Space Res. (2)

M. J. Taylor, “A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere,” Adv. Space Res. 19, 667–676 (1997).
[CrossRef]

T. Nygrén, M. J. Taylor, G. R. Swenson, and M. S. Lehtinen, “Observing gravity wave activity in the mesopause region by means of airglow tomography,” Adv. Space Res. 26, 903–906 (2000).
[CrossRef]

Ann. Geophys. (2)

T. Nygrén, M. Markkanen, M. Lehtinen, and K. Kaila, “Application of stochastic inversion in auroral tomography,” Ann. Geophys. 14, 1124–1133 (1996).

T. Nygrén, M. J. Taylor, M. S. Lehtinen, and M. Markkanen, “Application of tomographic inversion in studying airglow in the mesopause region,” Ann. Geophys. 16, 1180–1189 (1998).
[CrossRef]

Appl. Opt. (5)

Astrophys. J. (1)

R. A. Bernstein, W. L. Freedman, and B. F. Madore, “The first detections of the extragalactic background light at 3000, 5500, and 8000 Å. I. Results,” Astrophys. J. 571, 56–84 (2002).
[CrossRef]

Atmos. Chem. Phys. (1)

D. A. Degenstein, A. E. Bourassa, C. Z. Roth, and E. J. Llewellyn, “Limb scatter ozone retrieval from 10 to 60 km using a mulitplicative algebraic reconstruction technique,” Atmos. Chem. Phys. 9, 6521–6529 (2009).
[CrossRef]

Can. Aeronaut. Space J. (1)

E. J. Llewellyn, W. S. C. Brooks, I. C. McDade, and D. W. Johnson, “Tomography from a Canadian small satellite in low Earth orbit,” Can. Aeronaut. Space J. 37, 72–76 (1994).

Can. J. Phys. (4)

I. C. McDade and E. J. Llewellyn, “Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements,” Can. J. Phys. 69, 1059–1068 (1991).
[CrossRef]

I. C. McDade and E. J. Llewellyn, “Satellite airglow limb tomography: methods for recovering structured emission rates in the mesospheric airglow layer,” Can. J. Phys. 71, 552–563 (1993).
[CrossRef]

D. A. Degenstein, E. J. Llewellyn, and N. D. Lloyd, “Tomographic retrieval of the oxygen infrared atmospheric band with the OSIRIS infrared imager,” Can. J. Phys. 82, 501–515(2004).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Temperatures in the upper mesosphere and lower thermosphere from OSIRIS observations of O2 A-band emission spectra,” Can. J. Phys. 88, 919–925 (2010).
[CrossRef]

Chin. Geograph. Sci. (1)

Z. Wang and S. Chen, “Effective solution algorithm for tomographic inversion of volume emission rate from satellite-based limb measurement,” Chin. Geograph. Sci. 21, 554–562 (2011).
[CrossRef]

Geophys. Res. Lett. (5)

C. D. Anger, J. S. Murphree, A. V. Jones, R. A. King, A. L. Broadfoot, L. L. Cogger, F. Creutzberg, R. L. Gattinger, G. Gustafsson, F. R. Harris, J. W. Haslett, E. J. Llewellyn, D. J. McConnell, D. J. McEwen, E. H. Richardson, G. Rostoker, B. R. Sandel, G. G. Shepherd, D. Venkatesan, D. D. Wallis, and G. Witt, “Scientific results from the Viking ultraviolet imager: an introduction,” Geophys. Res. Lett. 14, 383–386 (1987).
[CrossRef]

P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, “Mesopause temperatures during the polar mesospheric cloud season,” Geophys. Res. Lett. 38, L11803 (2011).
[CrossRef]

M. J. Taylor, D. C. Fritts, and J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short-period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

M. J. Taylor, M. B. Bishop, and V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm) and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833 (1995).
[CrossRef]

X. Y. Zhou, D. Lummerzheim, R. Gladstone, and S. Gunapala, “Feasibility of observing dayside aurora using NIR camera onboard high-altitude balloons,” Geophys. Res. Lett. 34, L03105 (2007).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

D. S. Anderson, F. Kamalabadi, and G. R. Swenson, “Estimation of three-dimensional atmospheric wave parameters from ground-based spectroscopic airglow image data,” IEEE Trans. Geosci. Remote Sens. 47, 2427–2435 (2009).
[CrossRef]

J. Semeter and M. Mendillo, “A nonlinear optimization technique for ground-based atmospheric emission tomography,” IEEE Trans. Geosci. Remote Sens. 35, 1105–1116 (1997).
[CrossRef]

J. Atmos. Sol. Terr. Phys. (3)

D. A. Degenstein, R. L. Gattinger, N. D. Lloyd, A. E. Bourassa, J. T. Wiensz, and E. J. Llewellyn, “Observations of an extended mesospheric tertiary ozone peak,” J. Atmos. Sol. Terr. Phys. 67, 1395–1402 (2005).
[CrossRef]

J. Fujii, T. Nakamura, T. Tsuda, and K. Shiokawa, “Comparisons of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations,” J. Atmos. Sol. Terr. Phys. 66, 573–583(2004).
[CrossRef]

S. Chakrabarti, “Ground based spectroscopic studies of sunlit airglow and aurora,” J. Atmos. Sol. Terr. Phys. 60, 1403–1423 (1998).
[CrossRef]

J. Atmos. Terr. Phys. (1)

L. L. Cogger and C. D. Anger, “The OI 5577 Å airglow experiment on the ISIS 2 satellite,” J. Atmos. Terr. Phys. 35, 2081–2084 (1973).
[CrossRef]

J. Geophys. Res. (5)

A. L. Broadfoot, D. B. Hatfield, E. R. Anderson, T. C. Stone, B. R. Sandel, J. A. Gardner, E. Murad, D. J. Knecht, C. P. Pike, and R. A. Viereck, “N2 triplet band systems and atomic oxygen in the dayglow,” J. Geophys. Res. 102, 11567–11584 (1997).
[CrossRef]

S. Adler-Golden, “Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,” J. Geophys. Res. 102, 19969–19976 (1997).
[CrossRef]

E. E. Remsberg, B. T. Marshall, M. Garcia-Comas, D. Krueger, G. S. Lingenfelser, J. Martin-Torres, M. G. Mlynczak, J. M. Russell, A. K. Smith, Y. Zhao, C. Brown, L. L. Gordley, M. J. Lopez-Gonzalez, M. Lopez-Puertas, C.-Y. She, M. J. Taylor, and R. E. Thompson, “Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER,” J. Geophys. Res. 113, D17101 (2008).
[CrossRef]

B. Gustavsson, T. Sergienko, M. T. Rietveld, F. Honary, Å. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah, T. Aso, M. Ejiri, and S. Marple, “First tomographic estimate of volume distribution of HF-pump enhanced airglow emission,” J. Geophys. Res. 106, 29105–29123 (2001).
[CrossRef]

Y. M. Zhao, M. J. Taylor, and X. Chu, “Comparison of simultaneous Na lidar and mesospheric nightglow temperature measurements and the effects of tides on the emission layer heights,” J. Geophys. Res. 110, D09S07 (2005).
[CrossRef]

Phys. Scr. (1)

D. J. Baker and A. T. Stair, “Rocket measurements of the altitude distributions of the hydroxyl airglow,” Phys. Scr. 37, 611 (1988).
[CrossRef]

Planet. Space Sci. (2)

I. C. McDade, N. D. Lloyd, and E. J. Llewellyn, “A rocket tomography measurement of the N2+ 3914 Å emission rates within an auroral arc,” Planet. Space Sci. 39, 895–906 (1991).
[CrossRef]

K. Kita, N. Iwagami, and T. Ogawa, “Rocket observations of oxygen night airglows: excitation mechanisms and oxygen atom concentration,” Planet. Space Sci. 40, 1269–1288 (1992).
[CrossRef]

Space Sci. Rev. (1)

D. M. Hunten, “Spectroscopic studies of the twilight airglow,” Space Sci. Rev. 6, 493–573 (1967).
[CrossRef]

Other (2)

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, 2001), pp. 49–68, 275–292.

V. Y. Khomich, A. I. Semenov, and N. N. Shefov, “Introduction,” in Airglow as an Indicator of Upper Atmospheric Structure and Dynamics (Springer, 2008), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Synchronous OH airglow images from BLO and SVO recorded on 15 February 15 2009 at 075132 UT showing gravity wave structures. Images have been flat fielded and processed to remove the star background and projected onto a 256km×256km grid.

Fig. 2.
Fig. 2.

Time sequence of OH airglow images from the BLO (left) and SVO (right) with a 7.5 min difference between successive images, illustrating coherent wave motion (indicated by arrows). The top two images were used for the tomographic reconstructions in this article.

Fig. 3.
Fig. 3.

An example of the overlapping technique used to align simultaneous images from BLO and SVO. The solid yellow line represents a common imaging profile from which projection data were extracted and used to create tomographic reconstructions of the OH structures.

Fig. 4.
Fig. 4.

Plots of OH emission brightness for BLO (top) and SVO (center) along a common 120 km profile (indicated by the yellow line in Fig. 1). The fitted background curves were used to remove large-scale brightness variations across these profiles. The bottom image demonstrates the excellent agreement between the two intensity profiles once these variations are removed.

Fig. 5.
Fig. 5.

Illustration of the discretized imaging region used in algebraic tomography. The contribution of a given pixel to a measured projection is defined by the weighting factor w represented by the shaded region showing the intersection of a ray with a pixel. The lightly shaded region represents the imaging object.

Fig. 6.
Fig. 6.

Three of the profiles used to initialize the reconstruction algorithm during synthetic testing. The (a) square, (b) Chapman, and (c) Gaussian profiles are shown along with their vertical cross sections (left).

Fig. 7.
Fig. 7.

Results of synthetic testing performed using the three initial profiles shown in Fig. 6. (a) The synthetic object was designed to include asymmetries and height variation in order to test the robustness of the algorithm and compare initial guesses. The reconstructions resulting from (b) square, (c) Chapman, and (d) Gaussian initializations are shown.

Fig. 8.
Fig. 8.

Average VER profile of the OH emission determined from SABER observations onboard NASA’s TIMED satellite. The data were collected in February of 2009 and correspond to instances when the satellite passed within the vicinity of BLO. The profile exhibits a Gaussian-like shape of FWHM 9.8 km and a peak height of 87.3 km.

Fig. 9.
Fig. 9.

Cross-sectional tomographic reconstruction of the OH layer using data from two ground-based CCD cameras and constrained using a Gaussian profile. Note the change in structure, content, and apparent layer depth along the line joining BLO and SVO.

Fig. 10.
Fig. 10.

Sketch showing the fanning configuration applied to the airglow data. Images were acquired by all-sky cameras at BLO and SVO (sites 1 and 2 in the figure) and tomographically reconstructed to create a 3D mapping of the OH layer.

Fig. 11.
Fig. 11.

Composite 3D rendering of the airglow layer formed by combining 180 individual 2D reconstructions using the fanning geometry of Fig. 10.

Fig. 12.
Fig. 12.

Expanded view of the 3D airglow mapping shown in Fig. 11. The 3D rendering has been divided into six horizontal slices, each separated by 1.2 km. The ability to observe individual wavelike structures within the airglow layer demonstrates the advantage of using the 3D fanning technique.

Fig. 13.
Fig. 13.

Lower portion of the 3D airglow mapping shown in Fig. 11 segmented normal to the wave crests.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p=wf.
p=n=1Nwnfn.
pm=n=1Nwm,nfn.
[w11w12w13w1Nw21w22w23w2Nw31w32w33w3NwM1wM2wM3wMN][f1f2f3fN]=[p1p2p3pM].
fm,n=fm1,n+λ(pmpmi)wm,nNm,
Nm=n=1Nwm,n.
PS(z)={PSmifμΓ2<z<μ+Γ20otherwise,
PC(z)=PCme12(1z~ez~),
z~=zμΓ.
PG(z)=PGme(zμ)2Γ.

Metrics