Abstract

We propose an experimental efficient optical pressure sensor based on a variable liquid lens and a modified point diffraction interferometer. The working principle of the sensor is based on the fact that a variation in pressure induces a change in lens curvature and hence in its focal length, which can be tracked and measured with the interferometer. The pressure is then measured by recording and processing the interferometric images. The sensor in this proposal can change its dynamic range by the simple axial movement of one of the components of the optical system. In this work we show the performance of the system within three working ranges: from 0 to 1 kPa with accuracy of approximately 0.01 kPa, from 0 to 7 kPa with 0.05 kPa accuracy, and from 0 to 30 kPa with 0.3 kPa accuracy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Halg, “A silicon pressure sensor with a low-cost contactless interferometer optical readout,” Sensors Actuators A 30, 225–230 (1992).
    [CrossRef]
  2. Q. Wang and Q. Yu, “Polymer diaphragm based sensitive fiber optic Fabry–Perot acoustic sensor,” Chin. Opt. Lett. 8, 266–269 (2010).
  3. S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
    [CrossRef]
  4. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
    [CrossRef]
  5. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181–4186 (1993).
    [CrossRef]
  6. A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,” Appl. Opt. 35, 1587–1589 (1996).
    [CrossRef]
  7. S. Calixto, F. J. Sánchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580–6585 (2008).
    [CrossRef]
  8. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. Martínez-Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009).
    [CrossRef]
  9. A. Werber and H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238–3245 (2005).
    [CrossRef]
  10. W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606(2010).
    [CrossRef]
  11. H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12, 2138–2149 (2004).
    [CrossRef]
  12. H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
    [CrossRef]
  13. B. Berge and J. Perseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  14. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 851128–1130 (2004).
    [CrossRef]
  15. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
    [CrossRef]
  16. C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photon. 2, 610–613 (2008).
    [CrossRef]
  17. C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer,” Langmuir 11, 2242–2246 (1995).
    [CrossRef]
  18. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
    [CrossRef]
  19. H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).
    [CrossRef]
  20. S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010).
    [CrossRef]
  21. E. Acosta, S. Chamadoira, and R. Blendowske, “Modified point diffraction interferometer for inspection and evaluation of ophthalmic components,” J. Opt. Soc. Am. A 23, 632–637 (2006).
    [CrossRef]
  22. R. N. Smartt and W. H. Steel, “Theory and application of point diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975).
  23. A. K. Aggarwal and S. K. Kaura, “Further applications of point diffraction interferometer,” J. Opt. 17, 135–137 (1986).
    [CrossRef]
  24. C. Koliopoulos, O. Kwon, R. Shagam, J. C. Wyant, and C. R. Hayslett, “Infrared point diffraction interferometer,” Opt. Lett. 3, 118–120 (1978).
    [CrossRef]
  25. P. Naulleau, K. A. Goldberg, E. M. Gullikson, and J. Bokor, “At-wavelength, system-level flare characterization of extreme ultraviolet optical systems,” Appl. Opt. 39, 2941–2947 (2000).
    [CrossRef]
  26. E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010).
    [CrossRef]
  27. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 2nd ed. (Gatesmark, 2009).
  28. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

2010 (6)

Q. Wang and Q. Yu, “Polymer diaphragm based sensitive fiber optic Fabry–Perot acoustic sensor,” Chin. Opt. Lett. 8, 266–269 (2010).

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

W. Song and D. Psaltis, “Optofluidic pressure sensor based on interferometric imaging,” Opt. Lett. 35, 3604–3606(2010).
[CrossRef]

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010).
[CrossRef]

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010).
[CrossRef]

2009 (2)

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. Martínez-Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48, 2308–2314 (2009).
[CrossRef]

2008 (2)

S. Calixto, F. J. Sánchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47, 6580–6585 (2008).
[CrossRef]

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photon. 2, 610–613 (2008).
[CrossRef]

2007 (1)

2006 (2)

E. Acosta, S. Chamadoira, and R. Blendowske, “Modified point diffraction interferometer for inspection and evaluation of ophthalmic components,” J. Opt. Soc. Am. A 23, 632–637 (2006).
[CrossRef]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

2005 (1)

2004 (2)

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12, 2138–2149 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 851128–1130 (2004).
[CrossRef]

2003 (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

2000 (2)

P. Naulleau, K. A. Goldberg, E. M. Gullikson, and J. Bokor, “At-wavelength, system-level flare characterization of extreme ultraviolet optical systems,” Appl. Opt. 39, 2941–2947 (2000).
[CrossRef]

B. Berge and J. Perseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1996 (1)

1995 (1)

C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer,” Langmuir 11, 2242–2246 (1995).
[CrossRef]

1993 (1)

1992 (1)

B. Halg, “A silicon pressure sensor with a low-cost contactless interferometer optical readout,” Sensors Actuators A 30, 225–230 (1992).
[CrossRef]

1986 (1)

A. K. Aggarwal and S. K. Kaura, “Further applications of point diffraction interferometer,” J. Opt. 17, 135–137 (1986).
[CrossRef]

1978 (1)

1975 (1)

R. N. Smartt and W. H. Steel, “Theory and application of point diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Acosta, E.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010).
[CrossRef]

E. Acosta, S. Chamadoira, and R. Blendowske, “Modified point diffraction interferometer for inspection and evaluation of ophthalmic components,” J. Opt. Soc. Am. A 23, 632–637 (2006).
[CrossRef]

Aggarwal, A. K.

A. K. Aggarwal and S. K. Kaura, “Further applications of point diffraction interferometer,” J. Opt. 17, 135–137 (1986).
[CrossRef]

Ahn, J. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Artal, P.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010).
[CrossRef]

Bae, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Bao, Z.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Barman, S.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Barrera-Rivera, K. A.

Berge, B.

B. Berge and J. Perseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Biebuyck, H. A.

C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer,” Langmuir 11, 2242–2246 (1995).
[CrossRef]

Blendowske, R.

Bokor, J.

Bueno, J. M.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010).
[CrossRef]

Calixto, S.

Chamadoira, S.

Chan, M. L.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Chen, C. V. H.-H.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Dharmatilleke, S.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Eddins, S. L.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 2nd ed. (Gatesmark, 2009).

Goldberg, K. A.

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 2nd ed. (Gatesmark, 2009).

Gorman, C. B.

C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer,” Langmuir 11, 2242–2246 (1995).
[CrossRef]

Gullikson, E. M.

Halg, B.

B. Halg, “A silicon pressure sensor with a low-cost contactless interferometer optical readout,” Sensors Actuators A 30, 225–230 (1992).
[CrossRef]

Hashimoto, K.

Hayslett, C. R.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 851128–1130 (2004).
[CrossRef]

Hirsa, A. H.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photon. 2, 610–613 (2008).
[CrossRef]

Hong, B. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Ishikawa, M.

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12, 2138–2149 (2004).
[CrossRef]

Jang, H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Jang, S.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Kaura, S. K.

A. K. Aggarwal and S. K. Kaura, “Further applications of point diffraction interferometer,” J. Opt. 17, 135–137 (1986).
[CrossRef]

Khaw, A. H.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Koliopoulos, C.

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 851128–1130 (2004).
[CrossRef]

Kwon, O.

Lee, Y.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Liu, Y.

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010).
[CrossRef]

López, C. A.

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photon. 2, 610–613 (2008).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Mannsfeld, S. C. B.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Martínez-Richa, A.

Mikhailenko, I.

Moran, P. M.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Morita, S.

Muir, B. V. O.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Naulleau, P.

Oku, H.

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12, 2138–2149 (2004).
[CrossRef]

Perseux, J.

B. Berge and J. Perseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Psaltis, D.

Rawicz, A. H.

Reese, C.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Ren, H.

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

Rodriguez, I.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Rosete-Aguilar, M.

Sánchez-Marin, F. J.

Sánchez-Morales, M. E.

Schwarz, C.

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010).
[CrossRef]

Shagam, R.

Sim, S. H.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Smartt, R. N.

R. N. Smartt and W. H. Steel, “Theory and application of point diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Sokolov, A. N.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Song, W.

Song, Y. I.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Steel, W. H.

R. N. Smartt and W. H. Steel, “Theory and application of point diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Stoltenberg, R. M.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Sugiura, N.

Tan, K. W.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Tee, B. C.-K.

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Wang, Q.

Werber, A.

Whitesides, G. M.

C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer,” Langmuir 11, 2242–2246 (1995).
[CrossRef]

Woods, R. E.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 2nd ed. (Gatesmark, 2009).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

Wu, S. T.

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

Wyant, J. C.

Xu, S.

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010).
[CrossRef]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Yu, Q.

Zappe, H.

Zhu, S. E.

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (4)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 851128–1130 (2004).
[CrossRef]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

H. Oku and M. Ishikawa, “High-speed liquid lens with 2 ms response and 80.3 nm root-mean-square wavefront error,” Appl. Phys. Lett. 94, 221108 (2009).
[CrossRef]

Chin. Opt. Lett. (1)

Eur. Phys. J. E (1)

B. Berge and J. Perseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

J. Biomed. Opt. (1)

E. Acosta, J. M. Bueno, C. Schwarz, and P. Artal, “Relationship between wave aberrations and histological features in ex vivo porcine crystalline lenses,” J. Biomed. Opt. 15, 055001 (2010).
[CrossRef]

J. Opt. (1)

A. K. Aggarwal and S. K. Kaura, “Further applications of point diffraction interferometer,” J. Opt. 17, 135–137 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

R. N. Smartt and W. H. Steel, “Theory and application of point diffraction interferometers,” Jpn. J. Appl. Phys. 14, 351–356 (1975).

Langmuir (1)

C. B. Gorman, H. A. Biebuyck, and G. M. Whitesides, “Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer,” Langmuir 11, 2242–2246 (1995).
[CrossRef]

Nano Lett. (1)

Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J. H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett. 10, 490–493 (2010).
[CrossRef]

Nat. Mater. (1)

S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, “Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers,” Nat. Mater. 9, 859–864 (2010).
[CrossRef]

Nat. Photon. (1)

C. A. López and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photon. 2, 610–613 (2008).
[CrossRef]

Opt. Express (3)

S. Xu, Y. Liu, H. Ren, and S. T. Wu, “A novel adaptive mechanical-wetting lens for visible and near infrared imaging,” Opt. Express 12, 12430–12435 (2010).
[CrossRef]

H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12, 2138–2149 (2004).
[CrossRef]

H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931–5936 (2007).
[CrossRef]

Opt. Lett. (2)

Sensors Actuators A (1)

B. Halg, “A silicon pressure sensor with a low-cost contactless interferometer optical readout,” Sensors Actuators A 30, 225–230 (1992).
[CrossRef]

Other (2)

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 2nd ed. (Gatesmark, 2009).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Prentice Hall, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Section of the LL setup at operation status. (b) LL filling operation.

Fig. 2.
Fig. 2.

PDI working principle.

Fig. 3.
Fig. 3.

Pressure sensor: optical setup at calibration mode.

Fig. 4.
Fig. 4.

Evolution of the LL shape at different applied pressures. (a) Lens profile recorded by an endoscopic camera and (b) its corresponding interferometric image.

Fig. 5.
Fig. 5.

Lens interferograms: (a) before processing and (b) after processing, showing enhancement and smoothing of the fringes.

Fig. 6.
Fig. 6.

Calibration for pressures between 0 and 29 kPa. Area under the first (C1) and second (C2) minimum versus applied pressure.

Fig. 7.
Fig. 7.

Residual values for (C1) and (C2) areas of the 0–29 kPa calibration.

Fig. 8.
Fig. 8.

Calibration for pressures between 0 and 7 kPa. Area under the first (C1) and second (C2) minimum versus applied pressure.

Fig. 9.
Fig. 9.

Residual values for (C1) and (C2) areas of the 0–7 kPa calibration.

Fig. 10.
Fig. 10.

Calibration for pressures between 0 and 1 kPa. Area under the second (C2) and third (C3) minimum versus applied pressure.

Fig. 11.
Fig. 11.

Residual values for (C2) and (C3) areas of the 0–1 kPa calibration.

Metrics