Abstract

Rubidium titanyl phosphate (RTP) is widely used for electro-optical applications at low switching voltages. RTP is nonhygroscopic and does not induce piezoelectric ringing up to the megahertz range. It has large electro-optic (EO) coefficients and a high damage threshold. We present here the EO coefficient wavelength dispersion measurements in the [550,950]nm spectral range using a method based on spectral interferometry. These data are necessary for, among other things, a quantitative modelization of an EO carrier-envelope phase shifter.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Gobert, P. M. Paul, J. F. Hergott, O. Tcherbakoff, F. Lepetit, P. D’Oliveira, F. Viala, and M. Comte, “Carrier-envelope phase control using linear electro-optic effect,” Opt. Express 19, 5410–5418 (2011).
    [CrossRef]
  2. J.-F. Hergott, O. Tcherbakoff, P.-M. Paul, Ph. Demengeot, M. Perdrix, F. Lepetit, D. Garzella, D. Guillaumet, M. Comte, P. D’Oliveira, and O. Gobert, “Carrier-envelope phase stabilization of a 20 W, grating based, chirped-pulse amplified laser, using electro-optic effect in a LiNbO3 crystal,” Opt. Express 19, 19935–19941 (2011).
    [CrossRef]
  3. O. Gobert, N. Fedorov, O. Tcherbakoff, J.-F. Hergott, M. Perdrix, F. Lepetit, D. Guillaumet, and M. Comte, “Measurement of carrier-envelope-phase shifts using spectral interferometry with a broad frequency laser source,” Opt. Commun. 285, 322–327 (2012).
    [CrossRef]
  4. S. H. Lee, S. H. Kim, K. H. Kim, M. H. Lee, and E. H. Lee, “A novel method for measuring continuous dispersion spectrum of electro-optic coefficients of nonlinear materials,” Opt. Express 17, 9828–9833 (2009).
    [CrossRef]
  5. M. Roth, E. Samoka, E. Mojaev, and M. Tseitlin, “RTP crystals for electro-optic Q-switching,” in Proceedings of the Sixth Russian-Israeli Bi-National Workshop on the Optimization of Composition, Structure and Properties of Metals, Oxides, Composities, Nano- and Amorphous Materials (Israeli Academy of Science and Humanities, 2007), pp. 205–212.
  6. M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31, 86–95 (2005).
    [CrossRef]
  7. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  8. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [CrossRef]
  9. J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
    [CrossRef]
  10. T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
    [CrossRef]
  11. Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
    [CrossRef]
  12. H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
    [CrossRef]
  13. K. Yonekura, L. Jin, and K. Takizawa, “Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal,” Jpn. J. Appl. Phys. 47, 5503–5508 (2008).
    [CrossRef]
  14. J. Mangin, Institut Carnot de Bourgogne, UMR 5209 CNRS–Université de Bourgogne (personal communication, 2006).

2012

O. Gobert, N. Fedorov, O. Tcherbakoff, J.-F. Hergott, M. Perdrix, F. Lepetit, D. Guillaumet, and M. Comte, “Measurement of carrier-envelope-phase shifts using spectral interferometry with a broad frequency laser source,” Opt. Commun. 285, 322–327 (2012).
[CrossRef]

2011

2009

2008

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal,” Jpn. J. Appl. Phys. 47, 5503–5508 (2008).
[CrossRef]

2007

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

2006

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[CrossRef]

2005

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31, 86–95 (2005).
[CrossRef]

1995

1994

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
[CrossRef]

1982

Aguilo, M.

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Albrecht, H.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[CrossRef]

Angert, N.

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31, 86–95 (2005).
[CrossRef]

Bonnin, C.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[CrossRef]

Boulanger, B.

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Carvajal, J. J.

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Cheriaux, G.

Comte, M.

D’Oliveira, P.

Demengeot, Ph.

Díaz, F.

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Fedorov, N.

O. Gobert, N. Fedorov, O. Tcherbakoff, J.-F. Hergott, M. Perdrix, F. Lepetit, D. Guillaumet, and M. Comte, “Measurement of carrier-envelope-phase shifts using spectral interferometry with a broad frequency laser source,” Opt. Commun. 285, 322–327 (2012).
[CrossRef]

Garzella, D.

Gobert, O.

Gromfeld, Y.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[CrossRef]

Guillaumet, D.

O. Gobert, N. Fedorov, O. Tcherbakoff, J.-F. Hergott, M. Perdrix, F. Lepetit, D. Guillaumet, and M. Comte, “Measurement of carrier-envelope-phase shifts using spectral interferometry with a broad frequency laser source,” Opt. Commun. 285, 322–327 (2012).
[CrossRef]

J.-F. Hergott, O. Tcherbakoff, P.-M. Paul, Ph. Demengeot, M. Perdrix, F. Lepetit, D. Garzella, D. Guillaumet, M. Comte, P. D’Oliveira, and O. Gobert, “Carrier-envelope phase stabilization of a 20 W, grating based, chirped-pulse amplified laser, using electro-optic effect in a LiNbO3 crystal,” Opt. Express 19, 19935–19941 (2011).
[CrossRef]

Hergott, J. F.

Hergott, J.-F.

O. Gobert, N. Fedorov, O. Tcherbakoff, J.-F. Hergott, M. Perdrix, F. Lepetit, D. Guillaumet, and M. Comte, “Measurement of carrier-envelope-phase shifts using spectral interferometry with a broad frequency laser source,” Opt. Commun. 285, 322–327 (2012).
[CrossRef]

J.-F. Hergott, O. Tcherbakoff, P.-M. Paul, Ph. Demengeot, M. Perdrix, F. Lepetit, D. Garzella, D. Guillaumet, M. Comte, P. D’Oliveira, and O. Gobert, “Carrier-envelope phase stabilization of a 20 W, grating based, chirped-pulse amplified laser, using electro-optic effect in a LiNbO3 crystal,” Opt. Express 19, 19935–19941 (2011).
[CrossRef]

Herrmann, M. A.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[CrossRef]

Ina, H.

Jin, L.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal,” Jpn. J. Appl. Phys. 47, 5503–5508 (2008).
[CrossRef]

Joffre, M.

Kato, K.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

Kim, K. H.

Kim, S. H.

Kobayashi, S.

Lee, E. H.

Lee, M. H.

Lee, S. H.

Lepetit, F.

Lepetit, L.

Mangin, J.

J. Mangin, Institut Carnot de Bourgogne, UMR 5209 CNRS–Université de Bourgogne (personal communication, 2006).

Mikami, T.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

Mojaev, E.

M. Roth, E. Samoka, E. Mojaev, and M. Tseitlin, “RTP crystals for electro-optic Q-switching,” in Proceedings of the Sixth Russian-Israeli Bi-National Workshop on the Optimization of Composition, Structure and Properties of Metals, Oxides, Composities, Nano- and Amorphous Materials (Israeli Academy of Science and Humanities, 2007), pp. 205–212.

Okamoto, T.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

Oseledchik, Y. S.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
[CrossRef]

Paul, P. M.

Paul, P.-M.

Pena, A.

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Perdrix, M.

O. Gobert, N. Fedorov, O. Tcherbakoff, J.-F. Hergott, M. Perdrix, F. Lepetit, D. Guillaumet, and M. Comte, “Measurement of carrier-envelope-phase shifts using spectral interferometry with a broad frequency laser source,” Opt. Commun. 285, 322–327 (2012).
[CrossRef]

J.-F. Hergott, O. Tcherbakoff, P.-M. Paul, Ph. Demengeot, M. Perdrix, F. Lepetit, D. Garzella, D. Guillaumet, M. Comte, P. D’Oliveira, and O. Gobert, “Carrier-envelope phase stabilization of a 20 W, grating based, chirped-pulse amplified laser, using electro-optic effect in a LiNbO3 crystal,” Opt. Express 19, 19935–19941 (2011).
[CrossRef]

Pisarevsky, A. I.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
[CrossRef]

Prosvirnin, A. L.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
[CrossRef]

Roth, M.

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31, 86–95 (2005).
[CrossRef]

M. Roth, E. Samoka, E. Mojaev, and M. Tseitlin, “RTP crystals for electro-optic Q-switching,” in Proceedings of the Sixth Russian-Israeli Bi-National Workshop on the Optimization of Composition, Structure and Properties of Metals, Oxides, Composities, Nano- and Amorphous Materials (Israeli Academy of Science and Humanities, 2007), pp. 205–212.

Samoka, E.

M. Roth, E. Samoka, E. Mojaev, and M. Tseitlin, “RTP crystals for electro-optic Q-switching,” in Proceedings of the Sixth Russian-Israeli Bi-National Workshop on the Optimization of Composition, Structure and Properties of Metals, Oxides, Composities, Nano- and Amorphous Materials (Israeli Academy of Science and Humanities, 2007), pp. 205–212.

Segonds, P.

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Starshenko, V. V.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
[CrossRef]

Svitanko, N. V.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
[CrossRef]

Takeda, M.

Takizawa, K.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal,” Jpn. J. Appl. Phys. 47, 5503–5508 (2008).
[CrossRef]

Tcherbakoff, O.

Tseitlin, M.

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31, 86–95 (2005).
[CrossRef]

M. Roth, E. Samoka, E. Mojaev, and M. Tseitlin, “RTP crystals for electro-optic Q-switching,” in Proceedings of the Sixth Russian-Israeli Bi-National Workshop on the Optimization of Composition, Structure and Properties of Metals, Oxides, Composities, Nano- and Amorphous Materials (Israeli Academy of Science and Humanities, 2007), pp. 205–212.

Viala, F.

Yonekura, K.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal,” Jpn. J. Appl. Phys. 47, 5503–5508 (2008).
[CrossRef]

Zaccaro, J.

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Glass Phys. Chem.

M. Roth, M. Tseitlin, and N. Angert, “Oxide crystals for electro-optic Q-switching of lasers,” Glass Phys. Chem. 31, 86–95 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

J. J. Carvajal, P. Segonds, A. Pena, J. Zaccaro, B. Boulanger, F. Díaz, and M. Aguilo, “Structural and optical properties of RbTiOPO4:Nb crystals,” J. Phys. Condens. Matter 19, 116214 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of dispersion of effective electro-optic coefficients r13E and r33E of non-doped congruent LiNbO3 crystal,” Jpn. J. Appl. Phys. 47, 5503–5508 (2008).
[CrossRef]

Opt. Commun.

O. Gobert, N. Fedorov, O. Tcherbakoff, J.-F. Hergott, M. Perdrix, F. Lepetit, D. Guillaumet, and M. Comte, “Measurement of carrier-envelope-phase shifts using spectral interferometry with a broad frequency laser source,” Opt. Commun. 285, 322–327 (2012).
[CrossRef]

Opt. Express

Opt. Mater.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4 crystal,” Opt. Mater. 3, 237–242 (1994).
[CrossRef]

Proc. SPIE

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for non-linear and electro-optic applications,” Proc. SPIE 6100, 61001F (2006).
[CrossRef]

Other

J. Mangin, Institut Carnot de Bourgogne, UMR 5209 CNRS–Université de Bourgogne (personal communication, 2006).

M. Roth, E. Samoka, E. Mojaev, and M. Tseitlin, “RTP crystals for electro-optic Q-switching,” in Proceedings of the Sixth Russian-Israeli Bi-National Workshop on the Optimization of Composition, Structure and Properties of Metals, Oxides, Composities, Nano- and Amorphous Materials (Israeli Academy of Science and Humanities, 2007), pp. 205–212.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Geometrical configuration.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

IPD as a function of applied voltage for 10 values of the wavelength.

Fig. 4.
Fig. 4.

Measured EO coefficient r33 and fit (corresponding to a Sellmeier-type formula) as a function of the wavelength.

Tables (2)

Tables Icon

Table 1. Standard Deviation (rad) on Parameter Aω0

Tables Icon

Table 2. Sellmeier Coefficients for r33, between 520 and 930 nm

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

M=(00r1300r2300r330r420r5100000).
(1nx2+r13Ez)x2+(1ny2+r23Ez)y2+(1nz2+r33Ez)z2+2yzr42Ey+2xyr51Ex=1.
ηij=(1nx2+r13Ez0001ny2+r23Ez0001nz2+r33Ez).
1nz2=1nz2+r33Ez.
nznz12nz3r33Ez.
ΔφCEP=π[3nz2r33nzλ|λ0+nz3r33λ|λ0]L.E.
I(ω)=2|Eo(ω)|2(1+cos(Δψ)),
Δψ=ω(τgEτg0)+ω0{(τgEτφE)(τg0τφ0)}.
Δψ=ω(AB)+ω0B.
A=τφEτφ0=12nz3r33ELc,B=πω0[3nz2r33nzλ|λ0+nz3r33λ|λ0]L.E.=ΔφCEPω0,AB=τgEτg0=12nz3r33ELcΔφCEPω0.
A=Δψ(ω0)ω0.
r33=2Acnz3EL.
r33=2(AV)enz3cL.
δr33r33δVV+δAA+δee+δLL.
r33(λ)=As+Bs1λ2Cs1+Bs2λ2Cs2.

Metrics