Abstract

The use of full color-sensitive photodetectors with three electrically tunable spectral responses allows the design of sensors that can be real-time reconfigured for different color acquisition modes. All the (physically identical) pixels can be biased in the same way, each giving the same set of RGB spectral responses: in this situation the conversion from the sensor color space to a reference color space can be implemented as usual, giving typical color errors ΔEa,b in the order of 2–3. Alternatively, pixels can be biased in two different ways (e.g., row by row), forming pairs: by joining the information from adjacent pixels, the sensor has six spectral responses, with a reduced resolution. By exploiting this plurality of spectral responses, color reproduction accuracy can be increased. In this work, an improved design of the Transverse Field Detector, a filterless and tunable three-color pixel, is used as the experimental device to propose a dual-color-mode reconfigurable sensor.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag. 21(3), 6–20 (2005).
    [CrossRef]
  2. B. A. Wandell and L. D. Silverstein, “Digital color reproduction,” in The Science of Color (Elsevier, 2003), pp. 281–316.
  3. E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698, (1997).
    [CrossRef]
  4. Poorvi L. Vora and H. Joel Trussell, “Measure of goodness of a set of color-scanning filters,” J. Opt. Soc. Am. A 10, 1499–1508 (1993).
    [CrossRef]
  5. G. Sharma and H. J. Trussell, “Figures of merit for color scanners,” IEEE Trans. Image Process. 6, 990–1001 (1997).
    [CrossRef]
  6. J. Farrell and B. Wandell, “Method and apparatus for identifying the color of an image,” U.S. patent 5,479,524 (26December1995).
  7. J. Farrell, D. Sherman, and B. Wandell, “How to turn your scanner into a colorimeter,” in IS&T Tenth International Congress on Advances in Non-Impact Printing Technologies (1994), pp. 579–581.
  8. Sony Corporation, “Realization of natural color reproduction in digital still cameras, closer to the natural sight perception of the human eye,” Sony technology development Article No. 03-029E (2003).
  9. G. D. Finlayson and M. S. Drew, “The maximum ignorance assumption with positivity,” in IS&T Fourth Color Imaging Conference (The Society for Imaging Science and Technology, 1996), Vol. 4, pp. 202–205.
  10. P. J. Miller, “Colorimetric imaging system,” U.S. patent 6,760,475 B1 (6July2004).
  11. G. Langfelder, F. Zaraga, and A. Longoni, “Experimental characterization of a CMOS pixel with a tunable color space,” in Proceedings of the 18th Color Imaging Conference (CIC) (The Society for Imaging Science and Technology, 2010), pp. 166–171.
  12. U. Barnhöfer, J. M. Di Carlo, B. Olding, and B. A. Wandell, “Color estimation error trade-offs,” Proc. SPIE 5017, 263–273(2003).
  13. G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Devices 56, 2563–2569 (2009).
    [CrossRef]
  14. Integrated System Engineering, Zurich, Switzerland, ISE TCAD Rel.7.5.
  15. J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2004).
    [CrossRef]
  16. P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18 μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
    [CrossRef]
  17. R. F. Lyon and P. M. Hubel, “Eyeing the camera: into the next century,” in Proceedings of IS&T/SID 10th Color Imaging Conference (The Society for Imaging Science and Technology, 2002), pp. 349–355.
  18. P. M. Hubel, “Foveon Technology and the changing landscape of digital cameras,” in Thirteenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (The Society for Imaging Science and Technology, 2005), pp. 314–317.
  19. S. Lansel, and B. Wandell, “Local linear learned image processing pipeline,” in Imaging Systems Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMC3.

2009 (1)

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Devices 56, 2563–2569 (2009).
[CrossRef]

2005 (1)

A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag. 21(3), 6–20 (2005).
[CrossRef]

2004 (1)

J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2004).
[CrossRef]

2003 (2)

U. Barnhöfer, J. M. Di Carlo, B. Olding, and B. A. Wandell, “Color estimation error trade-offs,” Proc. SPIE 5017, 263–273(2003).

P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18 μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
[CrossRef]

1997 (2)

E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698, (1997).
[CrossRef]

G. Sharma and H. J. Trussell, “Figures of merit for color scanners,” IEEE Trans. Image Process. 6, 990–1001 (1997).
[CrossRef]

1993 (1)

Barnhöfer, U.

U. Barnhöfer, J. M. Di Carlo, B. Olding, and B. A. Wandell, “Color estimation error trade-offs,” Proc. SPIE 5017, 263–273(2003).

Catrysse, P. B.

J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2004).
[CrossRef]

P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18 μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
[CrossRef]

Di Carlo, J. M.

U. Barnhöfer, J. M. Di Carlo, B. Olding, and B. A. Wandell, “Color estimation error trade-offs,” Proc. SPIE 5017, 263–273(2003).

Drew, M. S.

G. D. Finlayson and M. S. Drew, “The maximum ignorance assumption with positivity,” in IS&T Fourth Color Imaging Conference (The Society for Imaging Science and Technology, 1996), Vol. 4, pp. 202–205.

El Gamal, A.

A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag. 21(3), 6–20 (2005).
[CrossRef]

Eltoukhy, H.

A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag. 21(3), 6–20 (2005).
[CrossRef]

Farrell, J.

J. Farrell, D. Sherman, and B. Wandell, “How to turn your scanner into a colorimeter,” in IS&T Tenth International Congress on Advances in Non-Impact Printing Technologies (1994), pp. 579–581.

J. Farrell and B. Wandell, “Method and apparatus for identifying the color of an image,” U.S. patent 5,479,524 (26December1995).

Farrell, J. E.

J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2004).
[CrossRef]

Finlayson, G. D.

G. D. Finlayson and M. S. Drew, “The maximum ignorance assumption with positivity,” in IS&T Fourth Color Imaging Conference (The Society for Imaging Science and Technology, 1996), Vol. 4, pp. 202–205.

Fossum, E. R.

E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698, (1997).
[CrossRef]

Hubel, P. M.

P. M. Hubel, “Foveon Technology and the changing landscape of digital cameras,” in Thirteenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (The Society for Imaging Science and Technology, 2005), pp. 314–317.

R. F. Lyon and P. M. Hubel, “Eyeing the camera: into the next century,” in Proceedings of IS&T/SID 10th Color Imaging Conference (The Society for Imaging Science and Technology, 2002), pp. 349–355.

Langfelder, G.

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Devices 56, 2563–2569 (2009).
[CrossRef]

G. Langfelder, F. Zaraga, and A. Longoni, “Experimental characterization of a CMOS pixel with a tunable color space,” in Proceedings of the 18th Color Imaging Conference (CIC) (The Society for Imaging Science and Technology, 2010), pp. 166–171.

Lansel, S.

S. Lansel, and B. Wandell, “Local linear learned image processing pipeline,” in Imaging Systems Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMC3.

Longoni, A.

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Devices 56, 2563–2569 (2009).
[CrossRef]

G. Langfelder, F. Zaraga, and A. Longoni, “Experimental characterization of a CMOS pixel with a tunable color space,” in Proceedings of the 18th Color Imaging Conference (CIC) (The Society for Imaging Science and Technology, 2010), pp. 166–171.

Lyon, R. F.

R. F. Lyon and P. M. Hubel, “Eyeing the camera: into the next century,” in Proceedings of IS&T/SID 10th Color Imaging Conference (The Society for Imaging Science and Technology, 2002), pp. 349–355.

Miller, P. J.

P. J. Miller, “Colorimetric imaging system,” U.S. patent 6,760,475 B1 (6July2004).

Olding, B.

U. Barnhöfer, J. M. Di Carlo, B. Olding, and B. A. Wandell, “Color estimation error trade-offs,” Proc. SPIE 5017, 263–273(2003).

Sharma, G.

G. Sharma and H. J. Trussell, “Figures of merit for color scanners,” IEEE Trans. Image Process. 6, 990–1001 (1997).
[CrossRef]

Sherman, D.

J. Farrell, D. Sherman, and B. Wandell, “How to turn your scanner into a colorimeter,” in IS&T Tenth International Congress on Advances in Non-Impact Printing Technologies (1994), pp. 579–581.

Silverstein, L. D.

B. A. Wandell and L. D. Silverstein, “Digital color reproduction,” in The Science of Color (Elsevier, 2003), pp. 281–316.

Trussell, H. J.

G. Sharma and H. J. Trussell, “Figures of merit for color scanners,” IEEE Trans. Image Process. 6, 990–1001 (1997).
[CrossRef]

Trussell, H. Joel

Vora, Poorvi L.

Wandell, B.

S. Lansel, and B. Wandell, “Local linear learned image processing pipeline,” in Imaging Systems Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMC3.

J. Farrell and B. Wandell, “Method and apparatus for identifying the color of an image,” U.S. patent 5,479,524 (26December1995).

J. Farrell, D. Sherman, and B. Wandell, “How to turn your scanner into a colorimeter,” in IS&T Tenth International Congress on Advances in Non-Impact Printing Technologies (1994), pp. 579–581.

Wandell, B. A.

J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2004).
[CrossRef]

U. Barnhöfer, J. M. Di Carlo, B. Olding, and B. A. Wandell, “Color estimation error trade-offs,” Proc. SPIE 5017, 263–273(2003).

P. B. Catrysse and B. A. Wandell, “Integrated color pixels in 0.18 μm complementary metal oxide semiconductor technology,” J. Opt. Soc. Am. A 20, 2293–2306 (2003).
[CrossRef]

B. A. Wandell and L. D. Silverstein, “Digital color reproduction,” in The Science of Color (Elsevier, 2003), pp. 281–316.

Xiao, F.

J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2004).
[CrossRef]

Zaraga, F.

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Devices 56, 2563–2569 (2009).
[CrossRef]

G. Langfelder, F. Zaraga, and A. Longoni, “Experimental characterization of a CMOS pixel with a tunable color space,” in Proceedings of the 18th Color Imaging Conference (CIC) (The Society for Imaging Science and Technology, 2010), pp. 166–171.

IEEE Circuits Devices Mag. (1)

A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits Devices Mag. 21(3), 6–20 (2005).
[CrossRef]

IEEE Trans. Electron Devices (2)

E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron Devices 44, 1689–1698, (1997).
[CrossRef]

G. Langfelder, F. Zaraga, and A. Longoni, “Tunable spectral responses in a color-sensitive CMOS pixel for imaging applications,” IEEE Trans. Electron Devices 56, 2563–2569 (2009).
[CrossRef]

IEEE Trans. Image Process. (1)

G. Sharma and H. J. Trussell, “Figures of merit for color scanners,” IEEE Trans. Image Process. 6, 990–1001 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

Proc. SPIE (2)

U. Barnhöfer, J. M. Di Carlo, B. Olding, and B. A. Wandell, “Color estimation error trade-offs,” Proc. SPIE 5017, 263–273(2003).

J. E. Farrell, F. Xiao, P. B. Catrysse, and B. A. Wandell, “A simulation tool for evaluating digital camera image quality,” Proc. SPIE 5294, 124–131 (2004).
[CrossRef]

Other (11)

Integrated System Engineering, Zurich, Switzerland, ISE TCAD Rel.7.5.

J. Farrell and B. Wandell, “Method and apparatus for identifying the color of an image,” U.S. patent 5,479,524 (26December1995).

J. Farrell, D. Sherman, and B. Wandell, “How to turn your scanner into a colorimeter,” in IS&T Tenth International Congress on Advances in Non-Impact Printing Technologies (1994), pp. 579–581.

Sony Corporation, “Realization of natural color reproduction in digital still cameras, closer to the natural sight perception of the human eye,” Sony technology development Article No. 03-029E (2003).

G. D. Finlayson and M. S. Drew, “The maximum ignorance assumption with positivity,” in IS&T Fourth Color Imaging Conference (The Society for Imaging Science and Technology, 1996), Vol. 4, pp. 202–205.

P. J. Miller, “Colorimetric imaging system,” U.S. patent 6,760,475 B1 (6July2004).

G. Langfelder, F. Zaraga, and A. Longoni, “Experimental characterization of a CMOS pixel with a tunable color space,” in Proceedings of the 18th Color Imaging Conference (CIC) (The Society for Imaging Science and Technology, 2010), pp. 166–171.

B. A. Wandell and L. D. Silverstein, “Digital color reproduction,” in The Science of Color (Elsevier, 2003), pp. 281–316.

R. F. Lyon and P. M. Hubel, “Eyeing the camera: into the next century,” in Proceedings of IS&T/SID 10th Color Imaging Conference (The Society for Imaging Science and Technology, 2002), pp. 349–355.

P. M. Hubel, “Foveon Technology and the changing landscape of digital cameras,” in Thirteenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications (The Society for Imaging Science and Technology, 2005), pp. 314–317.

S. Lansel, and B. Wandell, “Local linear learned image processing pipeline,” in Imaging Systems Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMC3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic representation of the two acquisition modes of the proposed sensor: (a) standard RGB mode at full resolution, with color reconstruction based on a reference chart; (b) HCA mode at half the resolution, with color reconstruction that exploits six spectral responses to estimate the tristimulus.

Fig. 2.
Fig. 2.

(a) Si absorption coefficient versus wavelength in the visible range; (b) and (c) examples of tuning of the collection trajectories inside the volume of a 5-μm-deep, 4.7-μm-wide TFD pixel, as a result of the change in the pixel biasing voltages; (d) eight examples of the effect of the voltage tuning on the spectral responses.

Fig. 3.
Fig. 3.

(a) Best combination of two sets of spectral sensitivities for HCA mode. (b) Comparison between original tristimulus functions and those reconstructed using HCA mode.

Fig. 4.
Fig. 4.

Cadence layout view of the (a) 4×4 passive and (b) 2×2 active pixels of the TFD used to test RGB and HCA operation modes in this work.

Fig. 5.
Fig. 5.

(a) Collection of data from experimental measurements on the TFD spectral responses, processed with the ISET software, to relate the average color error and the worst coefficient of the CCM. (b) Best set of spectral responses for the TFD tested in this work (note that the overall quantum efficiency of the pixel is, at each wavelength, the sum of these three curves). (c) Simulated UV–IR cut filter.

Fig. 6.
Fig. 6.

Normalized spectral response of the green channel [the one biased at V2 in Figs. 2(a) and 2(b)] in five strongly different tuning conditions. The shift of the peak wavelength can be as large as >100nm.

Fig. 7.
Fig. 7.

(a) Best pair of TFD tunings for HCA mode and (b) corresponding reconstructed tristimulus functions. (c) Comparison of the chromaticity coordinates of the original (black dots), RGB reconstructed (red open circles), and HCA reconstructed (green squares) color coordinates of the MCC under a D65 source.

Metrics