H. Wang and Q. Kemao, “Frequency guided methods for demodulation of a single fringe pattern,” Opt. Express 17, 15118–15127 (2009).

[CrossRef]

H. Wang, Q. Kemao, W. Gao, S. H. Soon, and F. Lin, “Fringe pattern denoising using coherence enhancing diffusion,” Opt. Lett. 34, 1141–1143 (2009).

[CrossRef]

J. Villa, J. A. Quiroga, and I. Rosa, “Regularized quadratic cost function for oriented fringe-pattern filtering,” Opt. Lett. 34, 1741–1743 (2009).

[CrossRef]

W. Gao, N. T. H. Huyen, H. S. Loi, and Q. Kemao, “Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit,” Opt. Express 17, 23147–23152 (2009).

[CrossRef]

O. S. Dalmau-Cedeño, M. Rivera, and R. Legarda-Saenz, “Fast phase recovery from a single close-fringe pattern,” J. Opt. Soc. Am. A 25, 1361–1370 (2008).

[CrossRef]

C. Tang, L. Han, H. Ren, D. Zhou, Y. Chang, X. Wang, and X. Cui, “Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes,” Opt. Lett. 33, 2179–2181 (2008).

[CrossRef]

A. M. Siddiolo and L. D’ Acquisto, “A direction/orientation-based method for shape measurement by shadow Moire,” IEEE Trans. Instrum. Meas. 57, 843–849 (2008).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “A combined technique for obtaining fringe orientations of ESPI,” Opt. Commun. 273, 60–66 (2007).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “An algorithm for estimating both fringe orientation and fringe density,” Opt. Commun. 274, 286–292 (2007).

[CrossRef]

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317(2007).

[CrossRef]

Q. Kemao and S. H. Soon, “Sequential demodulation of a single fringe pattern guided by local frequencies,” Opt. Lett. 32, 127–129 (2007).

[CrossRef]

J. A. Quiroga, D. Crespo, J. A. G. Pedrero, and J. C. Martinez-Antón, “Recent advances in automatic demodulation of single fringe patterns,” FRINGE 2005 1, 90–97 (2006).

Q. Yu, X. Sun, X. Liu, and Z. Qiu, “Spin filtering with curve windows for interferometric fringe patterns,” Appl. Opt. 41, 2650–2654 (2002).

[CrossRef]

J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo 2π fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).

[CrossRef]

M. Servin, J. L. Marroquin, and F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695(2001).

[CrossRef]

K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns: I. general background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862–1870 (2001).

[CrossRef]

J. A. Quiroga, D. Crespo, J. A. G. Pedrero, and J. C. Martinez-Antón, “Recent advances in automatic demodulation of single fringe patterns,” FRINGE 2005 1, 90–97 (2006).

A. M. Siddiolo and L. D’ Acquisto, “A direction/orientation-based method for shape measurement by shadow Moire,” IEEE Trans. Instrum. Meas. 57, 843–849 (2008).

[CrossRef]

E. Davies, Machine Vision: Theory, Algorithms and Practicalities (Academic, 1990).

X. Yang, Q. Yu, and S. Fu, “A combined technique for obtaining fringe orientations of ESPI,” Opt. Commun. 273, 60–66 (2007).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “An algorithm for estimating both fringe orientation and fringe density,” Opt. Commun. 274, 286–292 (2007).

[CrossRef]

H. Wang, Q. Kemao, W. Gao, S. H. Soon, and F. Lin, “Fringe pattern denoising using coherence enhancing diffusion,” Opt. Lett. 34, 1141–1143 (2009).

[CrossRef]

W. Gao, N. T. H. Huyen, H. S. Loi, and Q. Kemao, “Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit,” Opt. Express 17, 23147–23152 (2009).

[CrossRef]

D. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley, 1998).

B. Jahne, Practical Handbook on Image Processing for Scientific Applications (CRC, 1997).

H. Wang and Q. Kemao, “Frequency guided methods for demodulation of a single fringe pattern,” Opt. Express 17, 15118–15127 (2009).

[CrossRef]

H. Wang, Q. Kemao, W. Gao, S. H. Soon, and F. Lin, “Fringe pattern denoising using coherence enhancing diffusion,” Opt. Lett. 34, 1141–1143 (2009).

[CrossRef]

W. Gao, N. T. H. Huyen, H. S. Loi, and Q. Kemao, “Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit,” Opt. Express 17, 23147–23152 (2009).

[CrossRef]

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317(2007).

[CrossRef]

Q. Kemao and S. H. Soon, “Sequential demodulation of a single fringe pattern guided by local frequencies,” Opt. Lett. 32, 127–129 (2007).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

T. Lindeberg, Scale_Space Theory in Computer Vision (Kluwer, 1994).

M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).

[CrossRef]

M. Servin, J. L. Marroquin, and F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695(2001).

[CrossRef]

J. L. Marroquin, R. Rodriquez-Vera, and M. Servin, “Local phase from local orientation by solution of a sequence of linear system,” J. Opt. Soc. Am. A 15, 1536–1544 (1998).

[CrossRef]

J. A. Quiroga, D. Crespo, J. A. G. Pedrero, and J. C. Martinez-Antón, “Recent advances in automatic demodulation of single fringe patterns,” FRINGE 2005 1, 90–97 (2006).

J. A. Quiroga, D. Crespo, J. A. G. Pedrero, and J. C. Martinez-Antón, “Recent advances in automatic demodulation of single fringe patterns,” FRINGE 2005 1, 90–97 (2006).

D. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley, 1998).

J. Villa, J. A. Quiroga, and I. Rosa, “Regularized quadratic cost function for oriented fringe-pattern filtering,” Opt. Lett. 34, 1741–1743 (2009).

[CrossRef]

J. A. Quiroga, D. Crespo, J. A. G. Pedrero, and J. C. Martinez-Antón, “Recent advances in automatic demodulation of single fringe patterns,” FRINGE 2005 1, 90–97 (2006).

M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).

[CrossRef]

J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo 2π fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).

[CrossRef]

M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).

[CrossRef]

J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo 2π fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).

[CrossRef]

M. Servin, J. L. Marroquin, and F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695(2001).

[CrossRef]

J. L. Marroquin, R. Rodriquez-Vera, and M. Servin, “Local phase from local orientation by solution of a sequence of linear system,” J. Opt. Soc. Am. A 15, 1536–1544 (1998).

[CrossRef]

A. M. Siddiolo and L. D’ Acquisto, “A direction/orientation-based method for shape measurement by shadow Moire,” IEEE Trans. Instrum. Meas. 57, 843–849 (2008).

[CrossRef]

H. Wang, Q. Kemao, W. Gao, S. H. Soon, and F. Lin, “Fringe pattern denoising using coherence enhancing diffusion,” Opt. Lett. 34, 1141–1143 (2009).

[CrossRef]

Q. Kemao and S. H. Soon, “Sequential demodulation of a single fringe pattern guided by local frequencies,” Opt. Lett. 32, 127–129 (2007).

[CrossRef]

C. Tang, Z. Wang, L. Wang, J. Wu, T. Gao, and S. Yan, “Estimation of fringe orientation for optical fringe patterns with poor quality based on Fourier transform,” Appl. Opt. 49, 554–561 (2010).

[CrossRef]

C. Tang, L. Han, H. Ren, D. Zhou, Y. Chang, X. Wang, and X. Cui, “Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes,” Opt. Lett. 33, 2179–2181 (2008).

[CrossRef]

H. Wang, Q. Kemao, W. Gao, S. H. Soon, and F. Lin, “Fringe pattern denoising using coherence enhancing diffusion,” Opt. Lett. 34, 1141–1143 (2009).

[CrossRef]

H. Wang and Q. Kemao, “Frequency guided methods for demodulation of a single fringe pattern,” Opt. Express 17, 15118–15127 (2009).

[CrossRef]

J. Weickert, “Coherence-enhancing diffusion filtering,” Int. J. Comput. Vis. 31, 111–127 (1999).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “An algorithm for estimating both fringe orientation and fringe density,” Opt. Commun. 274, 286–292 (2007).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “A combined technique for obtaining fringe orientations of ESPI,” Opt. Commun. 273, 60–66 (2007).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “A combined technique for obtaining fringe orientations of ESPI,” Opt. Commun. 273, 60–66 (2007).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “An algorithm for estimating both fringe orientation and fringe density,” Opt. Commun. 274, 286–292 (2007).

[CrossRef]

Q. Yu, X. Sun, X. Liu, and Z. Qiu, “Spin filtering with curve windows for interferometric fringe patterns,” Appl. Opt. 41, 2650–2654 (2002).

[CrossRef]

Q. Yu, X. Sun, X. Liu, and Z. Qiu, “Spin filtering with curve windows for interferometric fringe patterns,” Appl. Opt. 41, 2650–2654 (2002).

[CrossRef]

X. Zhou, J. P. Baird, and J. F. Amold, “Fringe-orientation estimation by use of a Gaussian gradient filter and neighboring-direction averaging,” Appl. Opt. 38, 795–804 (1999).

[CrossRef]

C. Tang, Z. Wang, L. Wang, J. Wu, T. Gao, and S. Yan, “Estimation of fringe orientation for optical fringe patterns with poor quality based on Fourier transform,” Appl. Opt. 49, 554–561 (2010).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt. 43, 2695–2702 (2004).

[CrossRef]

W. Qu, O. C. Chee, Y. Yu, and A. Asundi, “Characterization and inspection of microlens array by single cube beam splitter microscopy,” Appl. Opt. 50, 886–890(2011).

[CrossRef]

J. A. Quiroga, D. Crespo, J. A. G. Pedrero, and J. C. Martinez-Antón, “Recent advances in automatic demodulation of single fringe patterns,” FRINGE 2005 1, 90–97 (2006).

A. M. Siddiolo and L. D’ Acquisto, “A direction/orientation-based method for shape measurement by shadow Moire,” IEEE Trans. Instrum. Meas. 57, 843–849 (2008).

[CrossRef]

J. Weickert, “Coherence-enhancing diffusion filtering,” Int. J. Comput. Vis. 31, 111–127 (1999).

[CrossRef]

O. S. Dalmau-Cedeño, M. Rivera, and R. Legarda-Saenz, “Fast phase recovery from a single close-fringe pattern,” J. Opt. Soc. Am. A 25, 1361–1370 (2008).

[CrossRef]

J. L. Marroquin, R. Rodriquez-Vera, and M. Servin, “Local phase from local orientation by solution of a sequence of linear system,” J. Opt. Soc. Am. A 15, 1536–1544 (1998).

[CrossRef]

K. G. Larkin, D. J. Bone, and M. A. Oldfield, “Natural demodulation of two-dimensional fringe patterns: I. general background of the spiral phase quadrature transform,” J. Opt. Soc. Am. A 18, 1862–1870 (2001).

[CrossRef]

M. Servin, J. A. Quiroga, and J. L. Marroquin, “General n-dimensional quadrature transform and its application to interferogram demodulation,” J. Opt. Soc. Am. A 20, 925–934 (2003).

[CrossRef]

J. A. Quiroga, M. Servin, and F. Cuevas, “Modulo 2π fringe orientation angle estimation by phase unwrapping with a regularized phase tracking algorithm,” J. Opt. Soc. Am. A 19, 1524–1531 (2002).

[CrossRef]

M. Servin, J. L. Marroquin, and F. J. Cuevas, “Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms,” J. Opt. Soc. Am. A 18, 689–695(2001).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “A combined technique for obtaining fringe orientations of ESPI,” Opt. Commun. 273, 60–66 (2007).

[CrossRef]

X. Yang, Q. Yu, and S. Fu, “An algorithm for estimating both fringe orientation and fringe density,” Opt. Commun. 274, 286–292 (2007).

[CrossRef]

W. Gao, N. T. H. Huyen, H. S. Loi, and Q. Kemao, “Real-time 2D parallel windowed Fourier transform for fringe pattern analysis using Graphics Processing Unit,” Opt. Express 17, 23147–23152 (2009).

[CrossRef]

K. G. Larkin, “Uniform estimation of orientation using local and nonlocal 2D energy operators,” Opt. Express 13, 8097–8121 (2005).

[CrossRef]

H. Wang and Q. Kemao, “Frequency guided methods for demodulation of a single fringe pattern,” Opt. Express 17, 15118–15127 (2009).

[CrossRef]

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations,” Opt. Lasers Eng. 45, 304–317(2007).

[CrossRef]

Q. Kemao and S. H. Soon, “Sequential demodulation of a single fringe pattern guided by local frequencies,” Opt. Lett. 32, 127–129 (2007).

[CrossRef]

C. Tang, L. Han, H. Ren, D. Zhou, Y. Chang, X. Wang, and X. Cui, “Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes,” Opt. Lett. 33, 2179–2181 (2008).

[CrossRef]

H. Wang, Q. Kemao, W. Gao, S. H. Soon, and F. Lin, “Fringe pattern denoising using coherence enhancing diffusion,” Opt. Lett. 34, 1141–1143 (2009).

[CrossRef]

J. Villa, J. A. Quiroga, and I. Rosa, “Regularized quadratic cost function for oriented fringe-pattern filtering,” Opt. Lett. 34, 1741–1743 (2009).

[CrossRef]

D. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping (Wiley, 1998).

B. Jahne, Practical Handbook on Image Processing for Scientific Applications (CRC, 1997).

E. Davies, Machine Vision: Theory, Algorithms and Practicalities (Academic, 1990).

T. Lindeberg, Scale_Space Theory in Computer Vision (Kluwer, 1994).

D. W. Robinson and G. T. Reid, eds., in Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (Institute of Physics, 1993).