Abstract

We numerically investigate the properties of the nested fiber ring resonator coupled Mach–Zehnder interferometer as a sensor. By introducing the phase bias of 0.5π in the reference arm, the two output intensities exhibit sharp asymmetric line shapes around the resonance wavelength. Utilizing the intensity interrogation, we analyze the effect of parameters on the sensitivity and the detection limit. For the 30 dB signal-noise system, the sensitivity and the detection limit can achieve 4.0866/°C and 7.341×103°C, respectively; the results indicate that this structure is suitable for high-sensitivity measurements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef]
  2. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach–Zehnder interferometers,” Opt. Express 18, 1879–1887 (2010).
    [CrossRef]
  3. J. Ju, L. N. Ma, W. Jin, and Y. M. Hu, “Photonic bandgap fiber tapers and in-fiber interferometric sensors.” Opt. Lett. 34, 1861–1863 (2009).
    [CrossRef]
  4. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
    [CrossRef]
  5. D. X. Dai and S. L. He, “Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring,” J. Opt. Soc. Am. B 26, 511–516 (2009).
    [CrossRef]
  6. Y. Lu, J. Q. Yao, X. F. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach–Zehnder interferometer,” Opt. Lett. 30, 3069–3071 (2005).
    [CrossRef]
  7. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527 –1529 (2003).
    [CrossRef]
  8. J. F. Wang, Y. D. Zhang, X. N. Zhang, H. Tian, H. Wu, Y. X. Cai, J. Zhang, and P. Yuan, “Enhancing the sensitivity of fiber Mach–Zehnder interferometers using slow and fast light,” Opt. Lett. 36, 3173–3175 (2011).
    [CrossRef]
  9. S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
    [CrossRef]
  10. S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
    [CrossRef]
  11. S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .
  12. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [CrossRef]
  13. L. J. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add–drop filters in silicon microring resonator-coupled Mach–Zehnder interferometers,” Opt. Lett. 32, 781–783 (2007).
    [CrossRef]
  14. S. Q. Feng, X. S. Luo, S. W. Du, and A. W. Poon, “Electro-optical tunable time delay and advance in a silicon feedback-microring resonator,” Opt. Lett. 36, 1278–1280 (2011).
    [CrossRef]
  15. M. Terrel, M. J. F. Digonnet, and S. H. Fan, “Ring-coupled Mach–Zehnder interferometer optimized for sensing,” Appl. Opt. 48, 4874–4879 (2009).
    [CrossRef]
  16. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [CrossRef]
  17. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]

2011 (2)

2010 (1)

2009 (4)

2008 (2)

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .

2007 (2)

2006 (1)

2005 (1)

2003 (1)

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527 –1529 (2003).
[CrossRef]

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

1998 (1)

1979 (1)

Baets, R.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Cai, Y. X.

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527 –1529 (2003).
[CrossRef]

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Chin, M. K.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .

S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
[CrossRef]

Corwin, K. L.

Dai, D. X.

Darmawan, S.

S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
[CrossRef]

Digonnet, M. J. F.

Du, S. W.

Dumon, P.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .

Epstein, R. J.

Fan, S. H.

Feng, S. Q.

Gondarenko, A.

Guha, B.

Guo, L. J.

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527 –1529 (2003).
[CrossRef]

Hand, C. F.

He, S. L.

Hocker, G. B.

Hu, Y. M.

Jin, W.

Ju, J.

Landobasa, Y. M.

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .

S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested ring Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
[CrossRef]

Li, X. F.

Lipson, M.

Lu, P.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Lu, Y.

Lu, Z. T.

Luo, X. S.

Ma, L. N.

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Poon, A. W.

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

Terrel, M.

Tian, H.

Wang, J. F.

Wang, P.

Wieman, C. E.

Wu, H.

Yao, J. Q.

Yuan, P.

Zhang, J.

Zhang, X. N.

Zhang, Y. D.

Zhou, L. J.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94, 131110 (2009).
[CrossRef]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527 –1529 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20, 9–11 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (1)

S. Darmawan, Y. M. Landobasa, R. Baets, P. Dumon, and M. K. Chin, “Nested-ring Mach-Zehnderinterferometer in silicon-on-insulator,” Proc. SPIE 6996, 69960P (2008). www.nusod.org/nusod06/Frontpage_files/ThA2.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the nested fiber ring resonator coupled M–Z interferometer.

Fig. 2.
Fig. 2.

Outputs of M–Z interferometer with different phase bias. (The solid red curve is for port one and the dotted blue curve is for port two.)

Fig. 3.
Fig. 3.

Change in normalized relative intensity as a function of the temperature for different feedback waveguide length.

Fig. 4.
Fig. 4.

Change in normalized relative intensity as a function of the temperature for different feedback waveguide length.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I1Iin=14[t22tcos(ΔΦ)+1],I2Iin=14[t2+2tcos(ΔΦ)+1].
τ=k02aeiφ/2+r02aReiRφaR+1ei(R+1)φ1r02aeiφ+k02aR+12ei(R+12)φ,
S=d(I1I2Iin)dT=d(I1I2Iin)dφ·dφdT=S·S0.
δT=δ[(I1I2)/Iin]S.

Metrics