Abstract

A new testing technique based on the use of a liquid crystal spatial light modulator (SLM) is proposed to analyze the optical quality of multifocal intraocular lenses (MIOLs). Different vergences and decentrations of the incident beam can be programmed onto the SLM in order to record the point spread function (PSF) for different object positions. From these axial PSFs, the through-focus modulation transfer function is computed. Because there are no moving parts in the experimental setup, this method is fast and versatile to assess MIOLs. Experimental results confirm the potential of the proposed method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Portney, “Optical testing and inspection methodology for modern intraocular lens,” J. Cataract Refract. Surg. 18, 607–613 (1992).
  2. R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31, 1618–1631 (2005).
    [CrossRef]
  3. S. Barbero, S. Marcos, and I. Jiménez-Alfaro, “Optical aberrations of intraocular lenses measured in vivo and in vitro,” J. Opt. Soc. Am. A 20, 1841–1851 (2003).
    [CrossRef]
  4. J. Schwiegerling and E. DeHoog, “Problems testing diffractive intraocular lenses with Shack–Hartmann sensors,” Appl. Opt. 49, D62–D68 (2010).
    [CrossRef]
  5. J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).
  6. D. A. Atchison, “Optical design of intraocular lenses. III. On-axis performance in the presence of lens displacement,” Optom. Vis. Sci. 66, 671–681 (1989).
    [CrossRef]
  7. F. Taketani, T. Matuura, E. Yukawa, and Y. Hara, “Influence of intraocular lens tilt and decentration on wavefront aberrations,” J. Cataract Refract. Surg. 30, 2158–2162(2004).
    [CrossRef]
  8. G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).
    [CrossRef]
  9. International Organization for Standardization, “Ophthalmic implants—intraocular lenses—part 9: multifocal intraocular lenses,” ISO/FDIS 11979-9 (International Organization for Standardization, 2006).
  10. P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).
  11. A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging,” J. Cataract Refract. Surg. 33, 418–429 (2007).
    [CrossRef]
  12. K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).
  13. T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
    [CrossRef]
  14. A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
    [CrossRef]
  15. M. J. Simpson, “Diffractive multifocal intraocular lens image quality,” Appl. Opt. 31, 3621–3626 (1992).
    [CrossRef]
  16. D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).
  17. V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37, 2053–2059 (2011).
    [CrossRef]
  18. J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008).
  19. F. Castignoles, M. Flury, and T. Lepine, “Comparison of the efficiency, MTF and chromatic properties of four diffractive bifocal intraocular lens designs,” Opt. Express 18, 5245–5256 (2010).
    [CrossRef]

2012 (1)

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

2011 (1)

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37, 2053–2059 (2011).
[CrossRef]

2010 (2)

2009 (1)

T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
[CrossRef]

2008 (1)

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008).

2007 (2)

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging,” J. Cataract Refract. Surg. 33, 418–429 (2007).
[CrossRef]

J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).

2005 (2)

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).
[CrossRef]

R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31, 1618–1631 (2005).
[CrossRef]

2004 (1)

F. Taketani, T. Matuura, E. Yukawa, and Y. Hara, “Influence of intraocular lens tilt and decentration on wavefront aberrations,” J. Cataract Refract. Surg. 30, 2158–2162(2004).
[CrossRef]

2003 (1)

1992 (3)

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

V. Portney, “Optical testing and inspection methodology for modern intraocular lens,” J. Cataract Refract. Surg. 18, 607–613 (1992).

M. J. Simpson, “Diffractive multifocal intraocular lens image quality,” Appl. Opt. 31, 3621–3626 (1992).
[CrossRef]

1989 (2)

K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).

D. A. Atchison, “Optical design of intraocular lenses. III. On-axis performance in the presence of lens displacement,” Optom. Vis. Sci. 66, 671–681 (1989).
[CrossRef]

1988 (1)

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).

Altmann, G. E.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).
[CrossRef]

Atchison, D.

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

Atchison, D. A.

D. A. Atchison, “Optical design of intraocular lenses. III. On-axis performance in the presence of lens displacement,” Optom. Vis. Sci. 66, 671–681 (1989).
[CrossRef]

Barbero, S.

Bradley, A.

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

Calatayud, A.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Castignoles, F.

Choi, J.

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008).

Collins, M. J.

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

Cristóbal, G.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

de Castro, A.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging,” J. Cataract Refract. Surg. 33, 418–429 (2007).
[CrossRef]

DeHoog, E.

Emori, Y.

K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).

Eppig, T.

T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
[CrossRef]

Flury, M.

Furlan, W. D.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Hara, Y.

F. Taketani, T. Matuura, E. Yukawa, and Y. Hara, “Influence of intraocular lens tilt and decentration on wavefront aberrations,” J. Cataract Refract. Surg. 30, 2158–2162(2004).
[CrossRef]

Jiménez-Alfaro, I.

Koester, C. J.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).

Lane, S. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).
[CrossRef]

Langenbucher, A.

T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
[CrossRef]

Lepine, T.

Lingenfelder, C.

R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31, 1618–1631 (2005).
[CrossRef]

Löffler, A.

T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
[CrossRef]

Marcos, S.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging,” J. Cataract Refract. Surg. 33, 418–429 (2007).
[CrossRef]

S. Barbero, S. Marcos, and I. Jiménez-Alfaro, “Optical aberrations of intraocular lenses measured in vivo and in vitro,” J. Opt. Soc. Am. A 20, 1841–1851 (2003).
[CrossRef]

Matuura, T.

F. Taketani, T. Matuura, E. Yukawa, and Y. Hara, “Influence of intraocular lens tilt and decentration on wavefront aberrations,” J. Cataract Refract. Surg. 30, 2158–2162(2004).
[CrossRef]

Mebner, A.

T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
[CrossRef]

Monsoriu, J. A.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Nakaizumi, H.

K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).

Nichamin, L. D.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).
[CrossRef]

Pepose, J. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).
[CrossRef]

Pérez-Emmanuelli, J.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).

Phillips, P.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).

Portney, V.

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37, 2053–2059 (2011).
[CrossRef]

V. Portney, “Optical testing and inspection methodology for modern intraocular lens,” J. Cataract Refract. Surg. 18, 607–613 (1992).

Rahman, H. A.

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

Rawer, R.

R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31, 1618–1631 (2005).
[CrossRef]

Remón, L.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Rodrigo, J. A.

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

Rosales, P.

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging,” J. Cataract Refract. Surg. 33, 418–429 (2007).
[CrossRef]

Rosskothen, H. D.

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).

Sakamoto, Y.

K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).

Sasaki, K.

K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).

Scholz, K.

T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
[CrossRef]

Schwiegerling, J.

J. Schwiegerling and E. DeHoog, “Problems testing diffractive intraocular lenses with Shack–Hartmann sensors,” Appl. Opt. 49, D62–D68 (2010).
[CrossRef]

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008).

J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).

Shibata, T.

K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).

Simpson, M. J.

Spraul, C. W.

R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31, 1618–1631 (2005).
[CrossRef]

Stork, W.

R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31, 1618–1631 (2005).
[CrossRef]

Taketani, F.

F. Taketani, T. Matuura, E. Yukawa, and Y. Hara, “Influence of intraocular lens tilt and decentration on wavefront aberrations,” J. Cataract Refract. Surg. 30, 2158–2162(2004).
[CrossRef]

Thibos, L. N.

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

Ye, M.

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

Yukawa, E.

F. Taketani, T. Matuura, E. Yukawa, and Y. Hara, “Influence of intraocular lens tilt and decentration on wavefront aberrations,” J. Cataract Refract. Surg. 30, 2158–2162(2004).
[CrossRef]

Zhang, X.

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

Appl. Opt. (2)

Appl. Phys. B (1)

A. Calatayud, J. A. Rodrigo, L. Remón, W. D. Furlan, G. Cristóbal, and J. A. Monsoriu, “Experimental generation and characterization of Devil’s vortex-lenses,” Appl. Phys. B 106, 915–919 (2012).
[CrossRef]

J. Cataract Refract. Surg. (9)

V. Portney, “Optical testing and inspection methodology for modern intraocular lens,” J. Cataract Refract. Surg. 18, 607–613 (1992).

R. Rawer, W. Stork, C. W. Spraul, and C. Lingenfelder, “Imaging quality of intraocular lenses,” J. Cataract Refract. Surg. 31, 1618–1631 (2005).
[CrossRef]

V. Portney, “Light distribution in diffractive multifocal optics and its optimization,” J. Cataract Refract. Surg. 37, 2053–2059 (2011).
[CrossRef]

F. Taketani, T. Matuura, E. Yukawa, and Y. Hara, “Influence of intraocular lens tilt and decentration on wavefront aberrations,” J. Cataract Refract. Surg. 30, 2158–2162(2004).
[CrossRef]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, “Optical performance of 3 intraocular lens designs in the presence of decentration,” J. Cataract Refract. Surg. 31, 574–585 (2005).
[CrossRef]

P. Phillips, J. Pérez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, “Measurement of intraocular lens decentration and tilt in vivo,” J. Cataract Refract. Surg. 14, 129–135 (1988).

A. de Castro, P. Rosales, and S. Marcos, “Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging,” J. Cataract Refract. Surg. 33, 418–429 (2007).
[CrossRef]

K. Sasaki, Y. Sakamoto, T. Shibata, H. Nakaizumi, and Y. Emori, “Measurement of postoperative intraocular lens tilting and decentration using Scheimpflug images,” J. Cataract Refract. Surg. 15, 454–457 (1989).

T. Eppig, K. Scholz, A. Löffler, A. Mebner, and A. Langenbucher, “Effect of decentration and tilt on the image quality of aspheric intraocular lens designs in a model eye,” J. Cataract Refract. Surg. 35, 1091–1100 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (2)

J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008).

J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).

Opt. Express (1)

Optom. Vis. Sci. (2)

D. Atchison, M. Ye, A. Bradley, M. J. Collins, X. Zhang, H. A. Rahman, and L. N. Thibos, “Chromatic aberration and optical power of a diffractive bifocal contact lens,” Optom. Vis. Sci. 69, 797–804 (1992).

D. A. Atchison, “Optical design of intraocular lenses. III. On-axis performance in the presence of lens displacement,” Optom. Vis. Sci. 66, 671–681 (1989).
[CrossRef]

Other (1)

International Organization for Standardization, “Ophthalmic implants—intraocular lenses—part 9: multifocal intraocular lenses,” ISO/FDIS 11979-9 (International Organization for Standardization, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for obtaining the axial PSF of an MIOL. The SLM (Holoeye PLUTO, 8 bit gray-level, pixel size d=8μm, resolution 1920×1080 pixels) modulates a collimated laser at λ=633nm. L2 (f2=20cm) and L3 (f3=10cm) conform an afocal relay system. BS, beam splitter; PH, pinhole. A 10× Zeiss Plan-Apochromat objective is attached to the CCD camera (12 bit gray-level, pixel pitch of 3.75 μm, and 1280×960 pixels) to record the PSF images.

Fig. 2.
Fig. 2.

Effect of a decentered illumination with respect to the IOL position. The shift amount in the x axis is given by xc.

Fig. 3.
Fig. 3.

Experimental and theoretical axial intensity produced by the MIOL under test with no decentration.

Fig. 4.
Fig. 4.

Experimental PSFs for different object vergences and three different decentrations (xc): (a) 0 mm, (b) 0.25 mm, and (c) 0.50 mm.

Fig. 5.
Fig. 5.

Lateral shift of the PSFs center of mass as a function of the vergence for the three decentration values.

Fig. 6.
Fig. 6.

Axial MTF computed from the experimental PSFs for different amounts of decentration: (a) 0 mm, (b) 0.25 mm, and (c) 0.50 mm.

Fig. 7.
Fig. 7.

MTFs for the in-focus images’ (a) distance focus and (b) near focus, obtained from Fig. 6 (horizontal lines).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕSLM(x,y)=circ((xxc)2+y2R)[ϕC+Dπλ((xxc)2+y2)],
ηm=sinc2(αm),

Metrics