Abstract

Aluminum fluoride (AlF3) is a low-refractive-index material widely used in coatings for deep-ultraviolet (DUV) optical systems, especially 193 nm laser systems. Low optical loss and stability are essential for film application. In this study, AlF3 thin films were prepared by thermal evaporation with a resistive heating boat. The effects of substrate temperatures and deposition rates on the optical properties in vacuum and in air, composition, and microstructures were discussed respectively. In vacuum the deposition parameters directly influenced the microstructures that determined the refractive index. When the films were exposed to air, aluminum oxide (Al2O3) formed in the films with water adsorption. Thus the refractive index increased and a nonmonotonic changing trend of the refractive index with substrate temperature was observed. The Al2O3 was also found to be conductive to reducing absorption loss. AlF3 films prepared at a high substrate temperature and deposition rate could yield stable structures with large optical loss.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Blaschke, J. Kohlhaas, P. Kadkhoda, and D. Ristau, “DUV/VUV spectrophotometry for high precision spectral characterization,” Proc. SPIE 4932, 536–543 (2003).
    [CrossRef]
  2. C. Zaczek, S. Mullender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
    [CrossRef]
  3. C. R. Xue, K. Yi, C. Y. Wei, J. D. Shao, and Z. X. Fan, “Optical constants of DUV/UV fluoride thin films,” Chin. Opt. Lett. 7, 449–451 (2009).
    [CrossRef]
  4. C. C. Lee, M. C. Liu, M. Kaneko, K. Nakahira, and Y. Takano, “Characterization of AlF3 thin films at 193 nm by thermal evaporation,” Appl. Opt. 44, 7333–7338 (2005).
    [CrossRef]
  5. W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
    [CrossRef]
  6. H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
    [CrossRef]
  7. C. C. Lee, B. H. Liao, and M. C. Liu, “Developing new manufacturing methods for the improvement of AlF3 thin films,” Opt. Express 16, 6904–6909 (2008).
    [CrossRef]
  8. C. C. Lee, B. H. Liao, and M. C. Liu, “AlF3 thin films deposited by reactive magnetron sputtering with Al target,” Opt. Express 15, 9152–9156 (2007).
    [CrossRef]
  9. J. D. Targove, B. G. Bovard, L. J. Lingg, and H. A. Macleod, “Densification of aluminum fluoride thin-films by ion-assisted deposition,” Thin Solid Films 159, L57–L59 (1988).
    [CrossRef]
  10. F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Carniglia, T. T. Hart, and T. L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Appl. Opt. 24, 496–500 (1985).
    [CrossRef]
  11. D. Ristau, S. Gunster, S. Bosch, A. Duparre, E. Masetti, J. Ferre-Borrull, G. Kiriakidis, F. Peiro, E. Quesnel, and A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
    [CrossRef]
  12. Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
    [CrossRef]
  13. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16, 1214–1222 (1983).
    [CrossRef]
  14. C. D. Wagner, Handbook of X-ray Photoelectroscopy(Perkin-Elmer, 1979).
  15. G. M. Hale and M. R. Querry, “Optical-constants of water in 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef]
  16. R. Breakspe, “High-temperature oxidation of aluminium in various gases,” J. App. Chem. 20, 208–212 (1970).
    [CrossRef]
  17. E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
    [CrossRef]
  18. R. J. Buszek, J. R. Barker, and J. S. Francisco, “Water effect on the OH plus HCl reaction,” J. Phys. Chem. A 116, 4712–4719 (2012).
    [CrossRef]
  19. C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
    [CrossRef]
  20. S. Niisaka, T. Saito, J. Saito, A. Tanaka, A. Matsumoto, M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y. Suzuki, and K. Sone, “Development of optical coatings for 157 nm lithography. I. Coating materials,” Appl. Opt. 41, 3242–3247(2002).
    [CrossRef]
  21. C. M. Kennemore and U. J. Gibson, “Ion-beam processing for coating MgF2 onto ambient-temperature substrates,” Appl. Opt. 23, 3608–3611 (1984).
    [CrossRef]
  22. B. A. Movchan and A. Demchish, “Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Metals Metallography 28, 653–660 (1969).
  23. U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
    [CrossRef]

2012 (1)

R. J. Buszek, J. R. Barker, and J. S. Francisco, “Water effect on the OH plus HCl reaction,” J. Phys. Chem. A 116, 4712–4719 (2012).
[CrossRef]

2009 (2)

C. R. Xue, K. Yi, C. Y. Wei, J. D. Shao, and Z. X. Fan, “Optical constants of DUV/UV fluoride thin films,” Chin. Opt. Lett. 7, 449–451 (2009).
[CrossRef]

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

2008 (2)

C. C. Lee, B. H. Liao, and M. C. Liu, “Developing new manufacturing methods for the improvement of AlF3 thin films,” Opt. Express 16, 6904–6909 (2008).
[CrossRef]

C. Zaczek, S. Mullender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

2007 (2)

C. C. Lee, B. H. Liao, and M. C. Liu, “AlF3 thin films deposited by reactive magnetron sputtering with Al target,” Opt. Express 15, 9152–9156 (2007).
[CrossRef]

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

2006 (1)

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

2005 (1)

2004 (1)

Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
[CrossRef]

2003 (1)

H. Blaschke, J. Kohlhaas, P. Kadkhoda, and D. Ristau, “DUV/VUV spectrophotometry for high precision spectral characterization,” Proc. SPIE 4932, 536–543 (2003).
[CrossRef]

2002 (2)

1996 (1)

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

1988 (1)

J. D. Targove, B. G. Bovard, L. J. Lingg, and H. A. Macleod, “Densification of aluminum fluoride thin-films by ion-assisted deposition,” Thin Solid Films 159, L57–L59 (1988).
[CrossRef]

1985 (1)

1984 (1)

1983 (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16, 1214–1222 (1983).
[CrossRef]

1973 (1)

1970 (2)

R. Breakspe, “High-temperature oxidation of aluminium in various gases,” J. App. Chem. 20, 208–212 (1970).
[CrossRef]

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

1969 (1)

B. A. Movchan and A. Demchish, “Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Metals Metallography 28, 653–660 (1969).

Abel, B.

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

Adamik, M.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Barker, J. R.

R. J. Buszek, J. R. Barker, and J. S. Francisco, “Water effect on the OH plus HCl reaction,” J. Phys. Chem. A 116, 4712–4719 (2012).
[CrossRef]

Barna, P. B.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Bijkerk, F.

C. Zaczek, S. Mullender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Biro, R.

Blaschke, H.

H. Blaschke, J. Kohlhaas, P. Kadkhoda, and D. Ristau, “DUV/VUV spectrophotometry for high precision spectral characterization,” Proc. SPIE 4932, 536–543 (2003).
[CrossRef]

Bosch, S.

Bovard, B. G.

J. D. Targove, B. G. Bovard, L. J. Lingg, and H. A. Macleod, “Densification of aluminum fluoride thin-films by ion-assisted deposition,” Thin Solid Films 159, L57–L59 (1988).
[CrossRef]

Breakspe, R.

R. Breakspe, “High-temperature oxidation of aluminium in various gases,” J. App. Chem. 20, 208–212 (1970).
[CrossRef]

Buszek, R. J.

R. J. Buszek, J. R. Barker, and J. S. Francisco, “Water effect on the OH plus HCl reaction,” J. Phys. Chem. A 116, 4712–4719 (2012).
[CrossRef]

Carniglia, C. K.

Chen, H. C.

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

Chen, H. L.

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

Demchish, A.

B. A. Movchan and A. Demchish, “Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Metals Metallography 28, 653–660 (1969).

Duparre, A.

Enkisch, H.

C. Zaczek, S. Mullender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Fan, Z. X.

Ferre-Borrull, J.

Francisco, J. S.

R. J. Buszek, J. R. Barker, and J. S. Francisco, “Water effect on the OH plus HCl reaction,” J. Phys. Chem. A 116, 4712–4719 (2012).
[CrossRef]

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

Gibson, U. J.

Gunster, S.

Hale, G. M.

Hansmann, B.

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

Hart, T. T.

Hasegawa, M.

Heitmann, W.

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

Hernandez, H.

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

Hsu, J. C.

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

Jaing, C. C.

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

Kadkhoda, P.

H. Blaschke, J. Kohlhaas, P. Kadkhoda, and D. Ristau, “DUV/VUV spectrophotometry for high precision spectral characterization,” Proc. SPIE 4932, 536–543 (2003).
[CrossRef]

Kaiser, U.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Kaneko, M.

Kennemore, C. M.

Kiriakidis, G.

Kohlhaas, J.

H. Blaschke, J. Kohlhaas, P. Kadkhoda, and D. Ristau, “DUV/VUV spectrophotometry for high precision spectral characterization,” Proc. SPIE 4932, 536–543 (2003).
[CrossRef]

Laux, S.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Lee, B. C.

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

Lee, C. C.

Lee, C. H.

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

Liao, B. H.

Lichtenstein, T. L.

Lin, Y. H.

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

Lingg, L. J.

J. D. Targove, B. G. Bovard, L. J. Lingg, and H. A. Macleod, “Densification of aluminum fluoride thin-films by ion-assisted deposition,” Thin Solid Films 159, L57–L59 (1988).
[CrossRef]

Liu, C. R.

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

Liu, M. C.

Lowdermilk, W. H.

Lu, C. J.

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

Macleod, H. A.

J. D. Targove, B. G. Bovard, L. J. Lingg, and H. A. Macleod, “Densification of aluminum fluoride thin-films by ion-assisted deposition,” Thin Solid Films 159, L57–L59 (1988).
[CrossRef]

Masetti, E.

Matsumoto, A.

Milam, D.

Movchan, B. A.

B. A. Movchan and A. Demchish, “Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Metals Metallography 28, 653–660 (1969).

Mullender, S.

C. Zaczek, S. Mullender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Nakahira, K.

Niisaka, S.

Otani, M.

Ouchi, C.

Peiro, F.

Querry, M. R.

Quesnel, E.

Rainer, F.

Richter, W.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Ristau, D.

Safran, G.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Saito, J.

Saito, T.

Shao, J. D.

Shiao, M. H.

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

Sone, K.

Suzuki, Y.

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16, 1214–1222 (1983).
[CrossRef]

Takano, Y.

Taki, Y.

Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
[CrossRef]

Tanaka, A.

Targove, J. D.

J. D. Targove, B. G. Bovard, L. J. Lingg, and H. A. Macleod, “Densification of aluminum fluoride thin-films by ion-assisted deposition,” Thin Solid Films 159, L57–L59 (1988).
[CrossRef]

Tikhonravov, A.

Troe, J.

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

Vohringer-Martinez, E.

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

Wagner, C. D.

C. D. Wagner, Handbook of X-ray Photoelectroscopy(Perkin-Elmer, 1979).

Wang, P. W.

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

Wei, C. Y.

Wu, K. T.

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

Xue, C. R.

Yi, K.

Zaczek, C.

C. Zaczek, S. Mullender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Appl. Opt. (6)

Appl. Surf. Sci. (1)

H. L. Chen, J. C. Hsu, P. W. Wang, Y. H. Lin, K. T. Wu, and C. R. Liu, “AlF3 film deposited by IAD with end-Hall ion source using SF6 as working gas,” Appl. Surf. Sci. 256, 1232–1235 (2009).
[CrossRef]

Chin. Opt. Lett. (1)

J. App. Chem. (1)

R. Breakspe, “High-temperature oxidation of aluminium in various gases,” J. App. Chem. 20, 208–212 (1970).
[CrossRef]

J. Phys. Chem. A (1)

R. J. Buszek, J. R. Barker, and J. S. Francisco, “Water effect on the OH plus HCl reaction,” J. Phys. Chem. A 116, 4712–4719 (2012).
[CrossRef]

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E Sci. Instrum. 16, 1214–1222 (1983).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. C. Jaing, M. H. Shiao, B. C. Lee, C. J. Lu, M. C. Liu, C. H. Lee, and H. C. Chen, “Effects of ion assistance and substrate temperature on optical characteristics and microstructure of MgF2 films formed by electron-beam evaporation,” Jpn. J. Appl. Phys. 45, 5027–5029 (2006).
[CrossRef]

Opt. Express (2)

Phys. Metals Metallography (1)

B. A. Movchan and A. Demchish, “Study of structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Phys. Metals Metallography 28, 653–660 (1969).

Proc. SPIE (2)

H. Blaschke, J. Kohlhaas, P. Kadkhoda, and D. Ristau, “DUV/VUV spectrophotometry for high precision spectral characterization,” Proc. SPIE 4932, 536–543 (2003).
[CrossRef]

C. Zaczek, S. Mullender, H. Enkisch, and F. Bijkerk, “Coatings for next generation lithography,” Proc. SPIE 7101, 71010X (2008).
[CrossRef]

Science (1)

E. Vohringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe, and B. Abel, “Water catalysis of a radical-molecule gas-phase reaction,” Science 315, 497–501 (2007).
[CrossRef]

Thin Solid Films (3)

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

J. D. Targove, B. G. Bovard, L. J. Lingg, and H. A. Macleod, “Densification of aluminum fluoride thin-films by ion-assisted deposition,” Thin Solid Films 159, L57–L59 (1988).
[CrossRef]

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, and W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2(111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Vacuum (1)

Y. Taki, “Film structure and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
[CrossRef]

Other (1)

C. D. Wagner, Handbook of X-ray Photoelectroscopy(Perkin-Elmer, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Reflectance spectra of AlF3 films on the optical monitor glass in vacuum prepared (a) at various substrate temperatures and (b) at various deposition rates.

Fig. 2.
Fig. 2.

Refractive index of AlF3 films in vacuum prepared (a) at various substrate temperatures and (b) at various deposition rates.

Fig. 3.
Fig. 3.

Transmittance and reflectance spectra of AlF3 films on the quartz substrates in air prepared (a) at various substrate temperatures and (b) at various deposition rates.

Fig. 4.
Fig. 4.

(a) Refractive index and (c) extinction coefficient in air of the AlF3 films prepared at various substrate temperatures. (b) Refractive index and (d) extinction coefficient in air of the AlF3 films prepared at various deposition rates.

Fig. 5.
Fig. 5.

Infrared transmittance spectra of AlF3 films on the silicon substrates prepared (a) at various substrate temperatures and (b) at various deposition rates.

Fig. 6.
Fig. 6.

XPS survey spectra of the AlF3 films at surface and 50 nm depth prepared at 200°C and 0.3nm/s.

Fig. 7.
Fig. 7.

High-resolution depth spectra of (a) F1s and (b) Al2p of the AlF3 films prepared at 200°C and 0.3nm/s.

Fig. 8.
Fig. 8.

High-resolution XPS spectra of O1s at 50 nm depth of AlF3 films prepared at (a) room, 0.3nm/s; (b) 200°C, 0.3nm/s; (c) 250°, 0.3nm/s; and (d) 250°C, 0.7nm/s.

Fig. 9.
Fig. 9.

O content of AlF3 films prepared at various (a) substrate temperatures and (b) deposition rates.

Fig. 10.
Fig. 10.

XRD patterns of AlF3 films prepared at various deposition parameters.

Fig. 11.
Fig. 11.

Three-dimensional surface morphology by AFM of selected 1μm×1μm areas of AlF3 films prepared at (a) room, 0.3nm/s; (b) 300°C, 0.3nm/s; (c) 250°, 0.1nm/s; and (d) 250°C, 0.7nm/s.

Fig. 12.
Fig. 12.

Surface roughness of AlF3 films prepared (a) at various substrate temperatures and (b) at various deposition rates.

Fig. 13.
Fig. 13.

SEM cross-sectional morphology of AlF3 films prepared at (a) room, 0.3nm/s; (b) 300°C, 0.3nm/s; (c) 250°C, 0.1nm/s; and (d) 250°C, 0.7nm/s.

Tables (1)

Tables Icon

Table 1. Deposition Parameters and Physical Thickness of AlF3 Films

Metrics