Abstract

Preferential input-waveguide grating couplers are rigorously analyzed using the pseudospectral time-domain method in the total field/scattered field formulation for TE and TM polarizations in conjunction with the convolutional perfect matching layer approach. Four kinds of preferential input-waveguide grating couplers are studied: the volume holographic grating coupler, the slanted parallelogrammic surface-relief grating coupler, the double-corrugated surface-relief grating coupler, and the reflecting-stack surface-relief grating coupler. Coupler’s input coupling efficiencies to various waveguide modes are calculated. In addition, a comparative study of performance is presented in terms of the main design parameters and the operational free-space wavelength.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Song and E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
    [CrossRef]
  2. Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
    [CrossRef]
  3. Q. Huang and P. R. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at an 850 nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
    [CrossRef]
  4. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000).
    [CrossRef]
  5. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
    [CrossRef]
  6. K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.
  7. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  8. H. Yamada, M. Nozawa, M. Kinoshita, and K. Ohashi, “Vertical-coupling optical interface for on-chip optical interconnection,” Opt. Express 19, 698–703 (2011).
    [CrossRef]
  9. S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
    [CrossRef]
  10. S. Bernabe, C. Kopp, M. Volpert, J. Harduin, J.-M. Fedeli, and H. Ribot, “Chip-to-chip optical interconnections between stacked self-aligned SOI photonic chips,” Opt. Express 20, 7886–7894 (2012).
    [CrossRef]
  11. A. D. Papadopoulos and E. N. Glytsis, “Preferential-order waveguide grating couplers: a comparative rigorous analysis using the finite-difference time-domain method,” Appl. Opt. 49, 5787–5798 (2010).
    [CrossRef]
  12. S.-D. Wu, E. N. Glytsis, and T. K. Gaylord, “Optimization of finite-length input volume holographic grating couplers illuminated by finite-size incident beams,” Appl. Opt. 44, 4435–4446 (2005).
    [CrossRef]
  13. H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).
  14. S.-D. Wu and E. N. Glytsis, “Volume holographic grating couplers: rigorous analysis using the finite-difference frequency-domain method,” Appl. Opt. 43, 1009–1023 (2004).
    [CrossRef]
  15. M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245 (1994).
    [CrossRef]
  16. M. Li and S. J. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profile,” Opt. Eng. 35, 3101–3106 (1996).
    [CrossRef]
  17. I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
    [CrossRef]
  18. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
    [CrossRef]
  19. R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, and B. J. J. Zelinski, “Design and fabrication of single-leakage-channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
    [CrossRef]
  20. R. L. Roncone, L. Li, K. A. Bates, and J. C. Brazas, “Single-leakage-channel grating couplers: comparison of theoretical and experimental branching ratios,” Opt. Lett. 18, 1919–1921(1993).
    [CrossRef]
  21. K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973).
    [CrossRef]
  22. M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun. 8, 113–117 (1973).
    [CrossRef]
  23. M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
    [CrossRef]
  24. M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973).
    [CrossRef]
  25. D. G. Dalgoutte and C. D. W. Wilkinson, “Thin grating couplers for integrated optics: an experimental and theoretical study,” Appl. Opt. 14, 2983–2998 (1975).
    [CrossRef]
  26. M. T. Woldarczyk and S. R. Seshadri, “Analysis of grating couplers in planar waveguides for waves at oblique incidence,” J. Opt. Soc. Am. A 2, 171–185 (1985).
    [CrossRef]
  27. L. Li and M. C. Gupta, “Effects of beam focusing on the efficiency of planar waveguide grating couplers,” Appl. Opt. 29, 5320–5325 (1990).
    [CrossRef]
  28. M. C. Gupta and L. Li, “Effect of beam defocus on the efficiency of planar waveguide grating couplers,” Appl. Opt. 30, 4402–4405 (1991).
    [CrossRef]
  29. D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
    [CrossRef]
  30. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000).
    [CrossRef]
  31. J. C. Brazas and L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995).
    [CrossRef]
  32. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
    [CrossRef]
  33. C.-K. Kwan and G. W. Taylor, “Optimization of the parallelogramic grating diffraction efficiency for normally incident wave,” Appl. Opt. 37, 7698–7707 (1998).
    [CrossRef]
  34. B. Wang, J. Jiang, and G. P. Nordin, “Compact slanted grating couplers,” Opt. Express 12, 3313–3326 (2004).
    [CrossRef]
  35. K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973).
    [CrossRef]
  36. P. Laakkonen, N. Passilly, and J. Turunen, “Diffractive optics for mobile solutions: light incoupling and polarization control with light guides,” Jpn. J. Appl. Phys. 47, 6635–6641 (2008).
    [CrossRef]
  37. B. Bai, J. Laakkonen, M. Kuittinen, and S. Siitonen, “Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides,” Appl. Opt. 49, 5454–5464 (2010).
    [CrossRef]
  38. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).
    [CrossRef]
  39. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
    [CrossRef]
  40. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  41. L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Antennas Propag. 48, 585–593 (2000).
    [CrossRef]
  42. A. D. Papadopoulos and E. N. Glytsis, “Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings,” Appl. Opt. 47, 1981–1994 (2008).
    [CrossRef]
  43. J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
    [CrossRef]
  44. Z. Lin, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).
    [CrossRef]
  45. Z. Lin, “The optimal spatially-smoother source patterns for the pseudospectral time-domain method,” IEEE Trans. Antennas Propag. 58, 227–229 (2010).
    [CrossRef]
  46. T.-W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” Microwave Opt. Technol. Lett. 15, 158–165 (1997).
    [CrossRef]
  47. G. Xiang, M. S. Mirotznik, and D. W. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE Trans. Antennas Propag. 52, 1665–1671 (2004).
    [CrossRef]
  48. A. D. Papadopoulos and E. N. Glytsis, “Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis,” Appl. Opt. 48, 5164–5175 (2009).
    [CrossRef]

2012 (1)

2011 (2)

H. Yamada, M. Nozawa, M. Kinoshita, and K. Ohashi, “Vertical-coupling optical interface for on-chip optical interconnection,” Opt. Express 19, 698–703 (2011).
[CrossRef]

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

2010 (3)

2009 (3)

A. D. Papadopoulos and E. N. Glytsis, “Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis,” Appl. Opt. 48, 5164–5175 (2009).
[CrossRef]

Z. Lin, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).
[CrossRef]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

2008 (2)

P. Laakkonen, N. Passilly, and J. Turunen, “Diffractive optics for mobile solutions: light incoupling and polarization control with light guides,” Jpn. J. Appl. Phys. 47, 6635–6641 (2008).
[CrossRef]

A. D. Papadopoulos and E. N. Glytsis, “Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings,” Appl. Opt. 47, 1981–1994 (2008).
[CrossRef]

2005 (1)

2004 (3)

2000 (5)

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Antennas Propag. 48, 585–593 (2000).
[CrossRef]

R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000).
[CrossRef]

S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000).
[CrossRef]

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

1999 (1)

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[CrossRef]

1998 (1)

1997 (6)

R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
[CrossRef]

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
[CrossRef]

Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Q. Huang and P. R. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at an 850 nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
[CrossRef]

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).
[CrossRef]

T.-W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” Microwave Opt. Technol. Lett. 15, 158–165 (1997).
[CrossRef]

1996 (1)

M. Li and S. J. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profile,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

1995 (2)

1994 (1)

M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245 (1994).
[CrossRef]

1993 (2)

1991 (1)

1990 (2)

1989 (1)

I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

1985 (1)

1975 (1)

1973 (5)

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973).
[CrossRef]

M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun. 8, 113–117 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973).
[CrossRef]

K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973).
[CrossRef]

1970 (1)

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

Ashley, P. R.

Avrutsky, I. A.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
[CrossRef]

I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

Awatsuji, Y.

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

Bai, B.

Bates, K. A.

Bernabe, S.

Bihari, B.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Bräuer, A.

Brazas, J. C.

Bristow, J.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Burke, J. J.

Buse, K.

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.

Cadilhac, M.

M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun. 8, 113–117 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973).
[CrossRef]

Chang, W. S. C.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973).
[CrossRef]

K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973).
[CrossRef]

Chen, R. T.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Choi, C.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Dalgoutte, D. G.

Dannberg, P.

Dinesen, P. G.

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[CrossRef]

Fedeli, J.-M.

Gaylord, T. K.

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Glytsis, E. N.

Gualous, H.

Gupta, M. C.

Gurel, L.

L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Antennas Propag. 48, 585–593 (2000).
[CrossRef]

Hagness, S. C.

T.-W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” Microwave Opt. Technol. Lett. 15, 158–165 (1997).
[CrossRef]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Harduin, J.

Havermeyer, F.

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.

Hesthaven, J. S.

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[CrossRef]

Hibbs-Brenner, M. K.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Huang, Q.

Inoue, J.

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

Jiang, J.

Karthe, W.

Kentaka, K.

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

Kinoshita, M.

Kita, Y.

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

Kley, E.-B.

Kogelnik, H.

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

Kopp, C.

Koster, A.

Kuittinen, M.

Kwan, C.-K.

Laakkonen, J.

Laakkonen, P.

P. Laakkonen, N. Passilly, and J. Turunen, “Diffractive optics for mobile solutions: light incoupling and polarization control with light guides,” Jpn. J. Appl. Phys. 47, 6635–6641 (2008).
[CrossRef]

Laval, S.

Layadi, A.

Lee, E. H.

Lee, T.-W.

T.-W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” Microwave Opt. Technol. Lett. 15, 158–165 (1997).
[CrossRef]

Li, L.

Li, M.

M. Li and S. J. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profile,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245 (1994).
[CrossRef]

Lin, L.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Lin, Z.

Z. Lin, “The optimal spatially-smoother source patterns for the pseudospectral time-domain method,” IEEE Trans. Antennas Propag. 58, 227–229 (2010).
[CrossRef]

Z. Lin, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).
[CrossRef]

Liu, Q. H.

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).
[CrossRef]

Liu, W.

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.

Liu, Y. J.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Liu, Y. S.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Lynovy, J. P.

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Mirotznik, M. S.

G. Xiang, M. S. Mirotznik, and D. W. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE Trans. Antennas Propag. 52, 1665–1671 (2004).
[CrossRef]

Moser, C.

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.

Neviere, M.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
[CrossRef]

M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun. 8, 113–117 (1973).
[CrossRef]

Nishihara, H.

Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Nordin, G. P.

Nozawa, M.

Ogawa, K.

K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973).
[CrossRef]

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973).
[CrossRef]

Oguz, U.

L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Antennas Propag. 48, 585–593 (2000).
[CrossRef]

Ohashi, K.

Orobtchouk, R.

Papadopoulos, A. D.

Parriaux, O.

Pascal, D.

Passilly, N.

P. Laakkonen, N. Passilly, and J. Turunen, “Diffractive optics for mobile solutions: light incoupling and polarization control with light guides,” Jpn. J. Appl. Phys. 47, 6635–6641 (2008).
[CrossRef]

Petit, R.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973).
[CrossRef]

M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun. 8, 113–117 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
[CrossRef]

Picor, B.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Prather, D. W.

G. Xiang, M. S. Mirotznik, and D. W. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE Trans. Antennas Propag. 52, 1665–1671 (2004).
[CrossRef]

Psaltis, D.

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.

Ribot, H.

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Roncone, R. L.

Rosenbaum, F. J.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973).
[CrossRef]

Schnabel, B.

Schultz, S. M.

Seshadri, S. R.

Sheard, S. J.

M. Li and S. J. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profile,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245 (1994).
[CrossRef]

Shimizu, K.

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

Siitonen, S.

Song, S. H.

Sopori, B. L.

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973).
[CrossRef]

Sosnowski, T. P.

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

Suhara, T.

Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Svakhin, A. S.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
[CrossRef]

I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett. 15, 1446–1448 (1990).
[CrossRef]

I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tang, S.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Taylor, G. W.

Turunen, J.

P. Laakkonen, N. Passilly, and J. Turunen, “Diffractive optics for mobile solutions: light incoupling and polarization control with light guides,” Jpn. J. Appl. Phys. 47, 6635–6641 (2008).
[CrossRef]

Ura, S.

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Vincent, P.

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
[CrossRef]

Volpert, M.

Waldhäusl, R.

Wang, B.

Weisenbach, L.

Wickman, R.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Wilkinson, C. D. W.

Woldarczyk, M. T.

Wu, L.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Wu, S.-D.

Xiang, G.

G. Xiang, M. S. Mirotznik, and D. W. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE Trans. Antennas Propag. 52, 1665–1671 (2004).
[CrossRef]

Xing, Q.

Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Yamada, H.

Zelinski, B. J. J.

Appl. Opt. (19)

Q. Huang and P. R. Ashley, “Holographic Bragg grating input-output couplers for polymer waveguides at an 850 nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
[CrossRef]

S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000).
[CrossRef]

S. H. Song and E. H. Lee, “Focusing-grating-coupler arrays for uniform and efficient signal distribution in a backboard optical interconnect,” Appl. Opt. 34, 5913–5919 (1995).
[CrossRef]

A. D. Papadopoulos and E. N. Glytsis, “Preferential-order waveguide grating couplers: a comparative rigorous analysis using the finite-difference time-domain method,” Appl. Opt. 49, 5787–5798 (2010).
[CrossRef]

S.-D. Wu, E. N. Glytsis, and T. K. Gaylord, “Optimization of finite-length input volume holographic grating couplers illuminated by finite-size incident beams,” Appl. Opt. 44, 4435–4446 (2005).
[CrossRef]

S.-D. Wu and E. N. Glytsis, “Volume holographic grating couplers: rigorous analysis using the finite-difference frequency-domain method,” Appl. Opt. 43, 1009–1023 (2004).
[CrossRef]

R. L. Roncone, L. Li, K. A. Bates, J. J. Burke, L. Weisenbach, and B. J. J. Zelinski, “Design and fabrication of single-leakage-channel grating coupler,” Appl. Opt. 32, 4522–4528 (1993).
[CrossRef]

D. G. Dalgoutte and C. D. W. Wilkinson, “Thin grating couplers for integrated optics: an experimental and theoretical study,” Appl. Opt. 14, 2983–2998 (1975).
[CrossRef]

L. Li and M. C. Gupta, “Effects of beam focusing on the efficiency of planar waveguide grating couplers,” Appl. Opt. 29, 5320–5325 (1990).
[CrossRef]

M. C. Gupta and L. Li, “Effect of beam defocus on the efficiency of planar waveguide grating couplers,” Appl. Opt. 30, 4402–4405 (1991).
[CrossRef]

D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a Gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Appl. Opt. 36, 2443–2447 (1997).
[CrossRef]

R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000).
[CrossRef]

J. C. Brazas and L. Li, “Analysis of input-grating couplers having finite lengths,” Appl. Opt. 34, 3786–3792 (1995).
[CrossRef]

R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
[CrossRef]

C.-K. Kwan and G. W. Taylor, “Optimization of the parallelogramic grating diffraction efficiency for normally incident wave,” Appl. Opt. 37, 7698–7707 (1998).
[CrossRef]

B. Bai, J. Laakkonen, M. Kuittinen, and S. Siitonen, “Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides,” Appl. Opt. 49, 5454–5464 (2010).
[CrossRef]

K. Ogawa and W. S. C. Chang, “Analysis of holographic thin film grating coupler,” Appl. Opt. 12, 2167–2171 (1973).
[CrossRef]

A. D. Papadopoulos and E. N. Glytsis, “Finite-difference-time-domain analysis of finite-number-of-periods holographic and surface-relief gratings,” Appl. Opt. 47, 1981–1994 (2008).
[CrossRef]

A. D. Papadopoulos and E. N. Glytsis, “Optical waveguide grating couplers: 2nd-order and 4th-order finite-difference time-domain analysis,” Appl. Opt. 48, 5164–5175 (2009).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik and T. P. Sosnowski, “Holographic thin film couplers,” Bell Syst. Tech. J. 49, 1602–1608 (1970).

IEEE J. Quantum Electron. (1)

K. Ogawa, W. S. C. Chang, B. L. Sopori, and F. J. Rosenbaum, “A theoretical analysis of etched grating couplers for integrated optics,” IEEE J. Quantum Electron. 9, 29–42(1973).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

S. Ura, K. Shimizu, Y. Kita, K. Kentaka, J. Inoue, and Y. Awatsuji, “Integrated-optic free-space-wave coupler for package-level on-board optical interconnects,” IEEE J. Sel. Topics Quantum Electron. 17, 590–596 (2011).
[CrossRef]

IEEE Trans. Antennas Propag. (3)

Z. Lin, “The optimal spatially-smoother source patterns for the pseudospectral time-domain method,” IEEE Trans. Antennas Propag. 58, 227–229 (2010).
[CrossRef]

L. Gurel and U. Oguz, “Signal-processing techniques to reduce the sinusoidal steady-state error in the FDTD method,” IEEE Trans. Antennas Propag. 48, 585–593 (2000).
[CrossRef]

G. Xiang, M. S. Mirotznik, and D. W. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE Trans. Antennas Propag. 52, 1665–1671 (2004).
[CrossRef]

J. Comput. Phys. (2)

J. S. Hesthaven, P. G. Dinesen, and J. P. Lynovy, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys. 155, 287–306 (1999).
[CrossRef]

Z. Lin, “An analytical derivation of the optimum source patterns for the pseudospectral time-domain method,” J. Comput. Phys. 228, 7375–7387 (2009).
[CrossRef]

J. Mod. Opt. (1)

I. A. Avrutsky, A. S. Svakhin, and V. A. Sychugov, “Interference phenomena in waveguide with two corrugated boundaries,” J. Mod. Opt. 36, 1303–1320 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

P. Laakkonen, N. Passilly, and J. Turunen, “Diffractive optics for mobile solutions: light incoupling and polarization control with light guides,” Jpn. J. Appl. Phys. 47, 6635–6641 (2008).
[CrossRef]

Microw. Opt. Technol. Lett. (2)

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).
[CrossRef]

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

T.-W. Lee and S. C. Hagness, “A compact wave source condition for the pseudospectral time-domain method,” Microwave Opt. Technol. Lett. 15, 158–165 (1997).
[CrossRef]

Opt. Commun. (5)

M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide system,” Opt. Commun. 8, 113–117 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Opt. Commun. 9, 48–53 (1973).
[CrossRef]

M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Determination of the coupling coefficient of a holographic thin film coupler,” Opt. Commun. 9, 240–245 (1973).
[CrossRef]

M. Li and S. J. Sheard, “Waveguide couplers using parallelogramic-shaped blazed gratings,” Opt. Commun. 109, 239–245 (1994).
[CrossRef]

Q. Xing, S. Ura, T. Suhara, and H. Nishihara, “Contra-directional coupling between stacked waveguides using grating couplers,” Opt. Commun. 144, 180–182 (1997).
[CrossRef]

Opt. Eng. (1)

M. Li and S. J. Sheard, “Experimental study of waveguide grating couplers with parallelogramic tooth profile,” Opt. Eng. 35, 3101–3106 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. IEEE (2)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88, 780–793 (2000).
[CrossRef]

Other (2)

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, 2007), pp. 295–317.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Geometric configuration of the input-waveguide grating coupler and the complete (actual+CPML) computational domain used for PSTD analysis.

Fig. 2.
Fig. 2.

Types of preferential input-waveguide grating couplers studied: (a) VHGC (grating in the cover region), (b) two-level SPSRGC (grating in the film region), (c) DCSRGC, and (d) RSSRGC.

Fig. 3.
Fig. 3.

Coupling efficiency, CEd, downward into the waveguide, as a function of the number of grating periods (Lg/Λy) for TE and TM polarizations.

Fig. 4.
Fig. 4.

Coupling efficiency, CEdm, downward into the waveguide, coupled into a waveguide mode, as a function of the number of grating periods (Lg/Λy) for TE and TM polarizations.

Fig. 5.
Fig. 5.

Coupling efficiency, CEdmode, downward into the waveguide for the VHGC, as a function of slant angle, ϕ, for TE and TM polarizations.

Fig. 6.
Fig. 6.

Coupling efficiency, CEdm, downward into the waveguide for the SPSRGC, as a function of slant angle, ϕ, for TE and TM polarizations.

Fig. 7.
Fig. 7.

Coupling efficiency, CEdm, downward into the waveguide for the RSSRGC, as a function of the buffer length db, for TE and TM polarizations.

Fig. 8.
Fig. 8.

Coupling efficiency, CEdm, downward into the waveguide for the DCSRGC, as a function of shift s of the two-level surface relief gratings, for TE and TM polarizations.

Fig. 9.
Fig. 9.

Coupling efficiency, CEdm, downward into the waveguide as a function of the free-space wavelength (λ0), for TE and TM polarizations.

Tables (1)

Tables Icon

Table 1. Parameters of Preferential Input-Waveguide Grating Couplers (Fig. 2)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U⃗inc(x,y,t)=z^g(y)h(t)exp(j(ωtk⃗·r⃗)),
g(y)=exp[(yW/2)2],
Ezn(x=iΔx,y=j0Δy)x=2πNxΔxFFT1[jnxFFT(Ezn(x=iΔx,y=j0Δy))],(i=1,2,,Nx),
ϵEzt=1κxHyx1κyHxy1κxζxHy,inc+ψEz,xψEz,y,
μHxt=1κyEzyψHx,y,
μHyt=1κxEzx1κxζxEz,inc+ψHy,x,

Metrics