Abstract

A high-resolution echelle spectrometer with broad wavelength coverage from the UV to the IR and high sensitivity to weak lines is described. Total instrument astigmatism is suppressed through rotation of the order separation system into an orthogonal plane. A suitable choice of mirror angles avoids increased coma. This spectrometer is used to record UV through IR spectra of Fe-group ions to measure improved branching fractions. These new results reduce transition probability uncertainties and yield more accurate derived stellar abundances. Instrument design and performance, including aberration compensation, are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mihalas, Stellar Atmospheres (W. H. Freeman and Company, 1978).
  2. D. Gray, The Observation and Analysis of Stellar Photospheres (Cambridge University, 1992).
  3. We adopt standard stellar spectroscopic notation that for elements A and B, [A/B]=log10(NA/NB)star−log10(NA/NB)Sun, and also define solar metallicity as [Fe/H]≡0.
  4. A. McWilliam, G. W. Preston, C. Sneden, and S. Shectman, “A spectroscopic analysis of 33 of the most metal-poor stars. I,” Astron. J. 109, 2736–2756 (1995).
    [CrossRef]
  5. A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal-poor stars. II,” Astron. J. 109, 2757–2799 (1995).
    [CrossRef]
  6. A. McWilliam, “Abundance ratios and Galactic chemical evolution,” Annu. Rev. Astron. Astrophys. 35, 503–556 (1997).
    [CrossRef]
  7. J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, “The r-process-enriched low-metallicity giant HD 115444,” Astrophys. J. 530, 783–799 (2000).
    [CrossRef]
  8. J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
    [CrossRef]
  9. C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
    [CrossRef]
  10. R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
    [CrossRef]
  11. P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
    [CrossRef]
  12. M. Asplund, “New light on stellar abundance analyses: departures from LTE and homogeneity,” Annu. Rev. Astron. Astrophys. 43, 481–530 (2005).
    [CrossRef]
  13. J. E. Lawler, “Laser and Fourier transform techniques for the measurement of atomic transition probabilities,” in Lasers, Spectroscopy, and New Ideas: A Tribute to Arthur L. Schawlow, W. M. Yen and M. D. Levenson, eds., Vol. 54 of Springer Series in Optical Sciences (Springer, 1987), pp. 125–140.
  14. J. W. Brault, “Rapid-scan high-resolution Fourier spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (1976).
  15. U. Pauls, N. Grevesse, and M. C. E. Huber, “Fe ii transition probabilities and the solar iron abundance,” Astron. Astrophys. 231, 536–542 (1990).
  16. A. Bard, A. Kock, and M. Kock, “Fe i oscillator strengths of lines of astrophysical interest,” Astron. Astrophys. 248, 315–322 (1991).
    [CrossRef]
  17. A. Bard and M. Kock, “Fe i oscillator strengths for lines with excitation energies between 3 and 7 eV,” Astron. Astrophys. 282, 1014–1020 (1994).
    [CrossRef]
  18. S. D. Bergeson, K. L. Mullman, and J. E. Lawler, “High-sensitivity absorption spectroscopy in Fe ii,” Astrophys. J. 464, 1050–1053 (1996).
    [CrossRef]
  19. J. E. Lawler, S. D. Bergeson, J. A. Fedchak, and K. L. Mullman, “VUV f-values of astrophysical interest from high sensitivity absorption spectroscopy on atomic ions,” Phys. Scr. T83, 11–18 (1999).
    [CrossRef]
  20. Ph. Pellin and A. Broca, “A spectroscope of fixed deviation,” Astrophys. J. 10, 337–342 (1899).
    [CrossRef]
  21. J. M. Sasián, “Aberrations from a prism and a grating,” Appl. Opt. 39, 34–39 (2000).
    [CrossRef]
  22. D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000).
  23. A. B. Shafer, L. R. Megill, and L. Droppleman, “Optimization of the Czerny-Turner spectrometer,” J. Opt. Soc. Am. 54, 879–887 (1964).
    [CrossRef]
  24. M. D. Rayman, C. G. Aminoff, and J. L. Hall, “Precise laser frequency scanning using frequency-synthesized optical frequency sidebands: application to isotope shifts and hyperfine structure of mercury,” J. Opt. Soc. Am. B 6, 539–549 (1989).
    [CrossRef]

2005

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

M. Asplund, “New light on stellar abundance analyses: departures from LTE and homogeneity,” Annu. Rev. Astron. Astrophys. 43, 481–530 (2005).
[CrossRef]

2004

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

2003

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

2002

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

2000

J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, “The r-process-enriched low-metallicity giant HD 115444,” Astrophys. J. 530, 783–799 (2000).
[CrossRef]

J. M. Sasián, “Aberrations from a prism and a grating,” Appl. Opt. 39, 34–39 (2000).
[CrossRef]

1999

J. E. Lawler, S. D. Bergeson, J. A. Fedchak, and K. L. Mullman, “VUV f-values of astrophysical interest from high sensitivity absorption spectroscopy on atomic ions,” Phys. Scr. T83, 11–18 (1999).
[CrossRef]

1997

A. McWilliam, “Abundance ratios and Galactic chemical evolution,” Annu. Rev. Astron. Astrophys. 35, 503–556 (1997).
[CrossRef]

1996

S. D. Bergeson, K. L. Mullman, and J. E. Lawler, “High-sensitivity absorption spectroscopy in Fe ii,” Astrophys. J. 464, 1050–1053 (1996).
[CrossRef]

1995

A. McWilliam, G. W. Preston, C. Sneden, and S. Shectman, “A spectroscopic analysis of 33 of the most metal-poor stars. I,” Astron. J. 109, 2736–2756 (1995).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal-poor stars. II,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

1994

A. Bard and M. Kock, “Fe i oscillator strengths for lines with excitation energies between 3 and 7 eV,” Astron. Astrophys. 282, 1014–1020 (1994).
[CrossRef]

1991

A. Bard, A. Kock, and M. Kock, “Fe i oscillator strengths of lines of astrophysical interest,” Astron. Astrophys. 248, 315–322 (1991).
[CrossRef]

1990

U. Pauls, N. Grevesse, and M. C. E. Huber, “Fe ii transition probabilities and the solar iron abundance,” Astron. Astrophys. 231, 536–542 (1990).

1989

1976

J. W. Brault, “Rapid-scan high-resolution Fourier spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (1976).

1964

1899

Ph. Pellin and A. Broca, “A spectroscope of fixed deviation,” Astrophys. J. 10, 337–342 (1899).
[CrossRef]

Aminoff, C. G.

Andersen, J.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Asplund, M.

M. Asplund, “New light on stellar abundance analyses: departures from LTE and homogeneity,” Annu. Rev. Astron. Astrophys. 43, 481–530 (2005).
[CrossRef]

Barbury, B.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Bard, A.

A. Bard and M. Kock, “Fe i oscillator strengths for lines with excitation energies between 3 and 7 eV,” Astron. Astrophys. 282, 1014–1020 (1994).
[CrossRef]

A. Bard, A. Kock, and M. Kock, “Fe i oscillator strengths of lines of astrophysical interest,” Astron. Astrophys. 248, 315–322 (1991).
[CrossRef]

Barklem, P. S.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

Beers, T.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Beers, T. C.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Bergeson, S. D.

J. E. Lawler, S. D. Bergeson, J. A. Fedchak, and K. L. Mullman, “VUV f-values of astrophysical interest from high sensitivity absorption spectroscopy on atomic ions,” Phys. Scr. T83, 11–18 (1999).
[CrossRef]

S. D. Bergeson, K. L. Mullman, and J. E. Lawler, “High-sensitivity absorption spectroscopy in Fe ii,” Astrophys. J. 464, 1050–1053 (1996).
[CrossRef]

Bessell, M. S.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

Bonifacio, P.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Brault, J. W.

J. W. Brault, “Rapid-scan high-resolution Fourier spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (1976).

Broca, A.

Ph. Pellin and A. Broca, “A spectroscope of fixed deviation,” Astrophys. J. 10, 337–342 (1899).
[CrossRef]

Burles, S.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Cayrel, R.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Christlieb, N.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

Cowan, J. J.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, “The r-process-enriched low-metallicity giant HD 115444,” Astrophys. J. 530, 783–799 (2000).
[CrossRef]

Depagne, E.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Droppleman, L.

Fedchak, J. A.

J. E. Lawler, S. D. Bergeson, J. A. Fedchak, and K. L. Mullman, “VUV f-values of astrophysical interest from high sensitivity absorption spectroscopy on atomic ions,” Phys. Scr. T83, 11–18 (1999).
[CrossRef]

François, P.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Fuller, G. M.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Gray, D.

D. Gray, The Observation and Analysis of Stellar Photospheres (Cambridge University, 1992).

Grevesse, N.

U. Pauls, N. Grevesse, and M. C. E. Huber, “Fe ii transition probabilities and the solar iron abundance,” Astron. Astrophys. 231, 536–542 (1990).

Gustafsson, B.

J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, “The r-process-enriched low-metallicity giant HD 115444,” Astrophys. J. 530, 783–799 (2000).
[CrossRef]

Hall, J. L.

Hill, V.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

Holmberg, J.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

Huber, M. C. E.

U. Pauls, N. Grevesse, and M. C. E. Huber, “Fe ii transition probabilities and the solar iron abundance,” Astron. Astrophys. 231, 536–542 (1990).

Ivans, I. I.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Kock, A.

A. Bard, A. Kock, and M. Kock, “Fe i oscillator strengths of lines of astrophysical interest,” Astron. Astrophys. 248, 315–322 (1991).
[CrossRef]

Kock, M.

A. Bard and M. Kock, “Fe i oscillator strengths for lines with excitation energies between 3 and 7 eV,” Astron. Astrophys. 282, 1014–1020 (1994).
[CrossRef]

A. Bard, A. Kock, and M. Kock, “Fe i oscillator strengths of lines of astrophysical interest,” Astron. Astrophys. 248, 315–322 (1991).
[CrossRef]

Kratz, K.-L.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Lawler, J. E.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

J. E. Lawler, S. D. Bergeson, J. A. Fedchak, and K. L. Mullman, “VUV f-values of astrophysical interest from high sensitivity absorption spectroscopy on atomic ions,” Phys. Scr. T83, 11–18 (1999).
[CrossRef]

S. D. Bergeson, K. L. Mullman, and J. E. Lawler, “High-sensitivity absorption spectroscopy in Fe ii,” Astrophys. J. 464, 1050–1053 (1996).
[CrossRef]

J. E. Lawler, “Laser and Fourier transform techniques for the measurement of atomic transition probabilities,” in Lasers, Spectroscopy, and New Ideas: A Tribute to Arthur L. Schawlow, W. M. Yen and M. D. Levenson, eds., Vol. 54 of Springer Series in Optical Sciences (Springer, 1987), pp. 125–140.

Marsteller, B.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

McWilliam, A.

A. McWilliam, “Abundance ratios and Galactic chemical evolution,” Annu. Rev. Astron. Astrophys. 35, 503–556 (1997).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal-poor stars. II,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and S. Shectman, “A spectroscopic analysis of 33 of the most metal-poor stars. I,” Astron. J. 109, 2736–2756 (1995).
[CrossRef]

Megill, L. R.

Mihalas, D.

D. Mihalas, Stellar Atmospheres (W. H. Freeman and Company, 1978).

Molaro, P.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Mullman, K. L.

J. E. Lawler, S. D. Bergeson, J. A. Fedchak, and K. L. Mullman, “VUV f-values of astrophysical interest from high sensitivity absorption spectroscopy on atomic ions,” Phys. Scr. T83, 11–18 (1999).
[CrossRef]

S. D. Bergeson, K. L. Mullman, and J. E. Lawler, “High-sensitivity absorption spectroscopy in Fe ii,” Astrophys. J. 464, 1050–1053 (1996).
[CrossRef]

Nordström, B.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Pauls, U.

U. Pauls, N. Grevesse, and M. C. E. Huber, “Fe ii transition probabilities and the solar iron abundance,” Astron. Astrophys. 231, 536–542 (1990).

Pellin, Ph.

Ph. Pellin and A. Broca, “A spectroscope of fixed deviation,” Astrophys. J. 10, 337–342 (1899).
[CrossRef]

Pfeiffer, B.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Plez, B.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Preston, G. W.

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal-poor stars. II,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and S. Shectman, “A spectroscopic analysis of 33 of the most metal-poor stars. I,” Astron. J. 109, 2736–2756 (1995).
[CrossRef]

Primas, F.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Rayman, M. D.

Reimers, D.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

Rossi, S.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

Sasián, J. M.

Schroeder, D. J.

D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000).

Searle, L.

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal-poor stars. II,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

Shafer, A. B.

Shectman, S.

A. McWilliam, G. W. Preston, C. Sneden, and S. Shectman, “A spectroscopic analysis of 33 of the most metal-poor stars. I,” Astron. J. 109, 2736–2756 (1995).
[CrossRef]

Sneden, C.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, “The r-process-enriched low-metallicity giant HD 115444,” Astrophys. J. 530, 783–799 (2000).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal-poor stars. II,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and S. Shectman, “A spectroscopic analysis of 33 of the most metal-poor stars. I,” Astron. J. 109, 2736–2756 (1995).
[CrossRef]

Spite, F.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Spite, M.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

Truran, J. W.

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

Westin, J.

J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, “The r-process-enriched low-metallicity giant HD 115444,” Astrophys. J. 530, 783–799 (2000).
[CrossRef]

Zickgraf, F.-J.

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

Annu. Rev. Astron. Astrophys.

A. McWilliam, “Abundance ratios and Galactic chemical evolution,” Annu. Rev. Astron. Astrophys. 35, 503–556 (1997).
[CrossRef]

M. Asplund, “New light on stellar abundance analyses: departures from LTE and homogeneity,” Annu. Rev. Astron. Astrophys. 43, 481–530 (2005).
[CrossRef]

Appl. Opt.

Astron. Astrophys.

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbury, P. Bonifacio, P. Molaro, and B. Nordström, “First stars V—abundance patterns from C to Zn and supernova yields in the early galaxy,” Astron. Astrophys. 416, 1117–1138 (2004).
[CrossRef]

P. S. Barklem, N. Christlieb, T. C. Beers, V. Hill, M. S. Bessell, J. Holmberg, B. Marsteller, S. Rossi, F.-J. Zickgraf, and D. Reimers, “The Hamburg/ESOr-process enhanced star survey (HERES),” Astron. Astrophys. 439, 129–151 (2005).
[CrossRef]

U. Pauls, N. Grevesse, and M. C. E. Huber, “Fe ii transition probabilities and the solar iron abundance,” Astron. Astrophys. 231, 536–542 (1990).

A. Bard, A. Kock, and M. Kock, “Fe i oscillator strengths of lines of astrophysical interest,” Astron. Astrophys. 248, 315–322 (1991).
[CrossRef]

A. Bard and M. Kock, “Fe i oscillator strengths for lines with excitation energies between 3 and 7 eV,” Astron. Astrophys. 282, 1014–1020 (1994).
[CrossRef]

Astron. J.

A. McWilliam, G. W. Preston, C. Sneden, and S. Shectman, “A spectroscopic analysis of 33 of the most metal-poor stars. I,” Astron. J. 109, 2736–2756 (1995).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal-poor stars. II,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

Astrophys. J.

J. Westin, C. Sneden, B. Gustafsson, and J. J. Cowan, “The r-process-enriched low-metallicity giant HD 115444,” Astrophys. J. 530, 783–799 (2000).
[CrossRef]

J. J. Cowan, C. Sneden, S. Burles, I. I. Ivans, T. C. Beers, J. W. Truran, J. E. Lawler, F. Primas, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The chemical composition and age of the metal-poor halo star BD+17°3248,” Astrophys. J. 572, 861–879 (2002).
[CrossRef]

C. Sneden, J. J. Cowan, J. E. Lawler, I. I. Ivans, S. Burles, T. C. Beers, F. Primas, V. Hill, J. W. Truran, G. M. Fuller, B. Pfeiffer, and K.-L. Kratz, “The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis,” Astrophys. J. 591, 936–953 (2003).
[CrossRef]

S. D. Bergeson, K. L. Mullman, and J. E. Lawler, “High-sensitivity absorption spectroscopy in Fe ii,” Astrophys. J. 464, 1050–1053 (1996).
[CrossRef]

Ph. Pellin and A. Broca, “A spectroscope of fixed deviation,” Astrophys. J. 10, 337–342 (1899).
[CrossRef]

J. Opt. Soc. Am.

J. W. Brault, “Rapid-scan high-resolution Fourier spectrometer for the visible,” J. Opt. Soc. Am. 66, 1081 (1976).

A. B. Shafer, L. R. Megill, and L. Droppleman, “Optimization of the Czerny-Turner spectrometer,” J. Opt. Soc. Am. 54, 879–887 (1964).
[CrossRef]

J. Opt. Soc. Am. B

Phys. Scr.

J. E. Lawler, S. D. Bergeson, J. A. Fedchak, and K. L. Mullman, “VUV f-values of astrophysical interest from high sensitivity absorption spectroscopy on atomic ions,” Phys. Scr. T83, 11–18 (1999).
[CrossRef]

Other

J. E. Lawler, “Laser and Fourier transform techniques for the measurement of atomic transition probabilities,” in Lasers, Spectroscopy, and New Ideas: A Tribute to Arthur L. Schawlow, W. M. Yen and M. D. Levenson, eds., Vol. 54 of Springer Series in Optical Sciences (Springer, 1987), pp. 125–140.

D. Mihalas, Stellar Atmospheres (W. H. Freeman and Company, 1978).

D. Gray, The Observation and Analysis of Stellar Photospheres (Cambridge University, 1992).

We adopt standard stellar spectroscopic notation that for elements A and B, [A/B]=log10(NA/NB)star−log10(NA/NB)Sun, and also define solar metallicity as [Fe/H]≡0.

D. J. Schroeder, Astronomical Optics, 2nd ed. (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic drawing of the instrument layout. There is a 90° rotation between the top and side view to emphasize the rotation of the order separator into a plane orthogonal to the grating spectrograph dispersion plane.

Fig. 2.
Fig. 2.

Astigmatic line foci locations in the instrument, shown with the same perspective as in Fig. 1. Due to the rotation of the order separator and a suitable choice for the mirror angles, the astigmatic foci of the grating spectrograph lie in the same location as the inverse foci of the order separator, allowing astigmatism to cancel.

Fig. 3.
Fig. 3.

A He–Ne laser and a 10 μm pinhole are used to check instrument aberrations. On the left is a composite of five individual CCD frames (one for each box). On the right, these five He–Ne spots are enlarged to show the detail of each blur. The box size on the CCD corresponds to the enlarged boxes to emphasize the large spectral area available on the CCD array.

Fig. 4.
Fig. 4.

UV continuum spectrum from a deuterium lamp calibration source. This 120 s exposure is taken with a 50 μm pinhole and covers 2200–3900 Å. Each vertical stripe is the deuterium lamp continuum from an individual grating order. The large elliptically shaped features are Moiré patterns and do not appear when the CCD frame is viewed at full resolution.

Fig. 5.
Fig. 5.

Hg i 5461 Å line. The 10 μm entrance pinhole is used to check instrument aberrations while the 50 μm pinhole is used for normal data collection. Exposure times of 120 and 10 s give approximately equal signals for the two exposures. The nearly isolated hyperfine component indicated gives a resolving power of 250,000 with a 50 μm pinhole.

Fig. 6.
Fig. 6.

Spectrum of a custom water-cooled Ti HC lamp from a combination of forty 30 s exposures and covering the same wavelength range as Fig. 4. The HC is 1.3 cm long and 3.3 mm in diameter running at 40 mA in 1.7 Torr of Ar gas. The contrast is purposely enhanced to show the multitude of weak lines in the deep UV. As a result, many of the strongest Ar and Ti lines appear artificially saturated.

Fig. 7.
Fig. 7.

Ti ii 3288.141 Å line from the 31490.918cm1 upper level (branching fraction 0.005). On top is a 150 mA FTS spectrum and below is the 40 mA spectrum shown in Fig. 6. The new instrument achieves increased S/N with lower current, making it less prone to optical depth errors.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Wmirror=y2θM22f,
Wgrating=12u(sin2θG1sin2θG2)y,
Wprism=121n2n2u[(sin2θP1sin2θP2)y12(sin2θP1+sin2θP2)utn].

Metrics