Abstract

We have investigated the use of multimode fiber in optical coherence tomography (OCT) with a mode filter that selectively suppresses the power of the high-order modes (HOMs). A large-core fiber (LCF) that has a moderate number of guiding modes was found to be an attractive alternative to the conventional single-mode fiber for its large mode area and the consequentially wide Rayleigh range of the output beam if the HOMs of the LCF were efficiently filtered out by a mode filter installed in the middle. For this, a simple mode filtering scheme of a fiber-coil mode filter was developed in this study. The LCF was uniformly coiled by an optimal bend radius with a fiber winder, specially devised for making a low-loss mode filter. The feasibility of the mode-filtered LCF in OCT imaging was tested with a common-path OCT system. It has been successfully demonstrated that our mode-filtered LCF can provide a useful imaging or sensing probe without an objective lens that greatly simplifies the structure of the probing optics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
    [CrossRef]
  2. D. Ðonlagić, “In-line higher order mode filters based on long highly uniform fiber tapers,” IEEE J. Lightwave Technol. 24, 3532–3539 (2006).
    [CrossRef]
  3. P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
    [CrossRef]
  4. D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
    [CrossRef]
  5. Z. Tian, C. Chen, and D. V. Plant, “850 nm VCSEL transmission over standard single-mode fiber using fiber mode filter,” IEEE Photon. Technol. Lett. 24, 368–370 (2012).
    [CrossRef]
  6. A. Kumar, S. Ghadirli, and K. Thyagarajan, “Performance of a dual-mode–single-mode waveguide coupler as a modal filter,” Appl. Opt. 31, 5092–5095 (1992).
    [CrossRef]
  7. S. Moon, G. Liu, and Z. Chen, “Mode-filtered large-core fiber for short-pulse delivery with reduced nonlinear effects,” Opt. Lett. 36, 3362–3364 (2011).
    [CrossRef]
  8. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
    [CrossRef]
  9. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216–220 (1976).
    [CrossRef]
  10. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66, 311–320 (1976).
    [CrossRef]
  11. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  12. K. S. Kaufman, R. Terras, and R. F. Mathis, “Curvature loss in multimode optical fibers,” J. Opt. Soc. Am. 71, 1513–1518 (1981).
    [CrossRef]

2012 (1)

Z. Tian, C. Chen, and D. V. Plant, “850 nm VCSEL transmission over standard single-mode fiber using fiber mode filter,” IEEE Photon. Technol. Lett. 24, 368–370 (2012).
[CrossRef]

2011 (1)

2007 (1)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

2006 (1)

D. Ðonlagić, “In-line higher order mode filters based on long highly uniform fiber tapers,” IEEE J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

2005 (1)

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

2004 (1)

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

1998 (1)

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

1992 (1)

1981 (1)

1976 (2)

Bächtold, W.

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

Chen, C.

Z. Tian, C. Chen, and D. V. Plant, “850 nm VCSEL transmission over standard single-mode fiber using fiber mode filter,” IEEE Photon. Technol. Lett. 24, 368–370 (2012).
[CrossRef]

Chen, Z.

Ðonlagic, D.

D. Ðonlagić, “In-line higher order mode filters based on long highly uniform fiber tapers,” IEEE J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

Ebeling, K. J.

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

Ghadirli, S.

Hunziker, S. G.

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

Jager, R.

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

Jung, C.

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

Kang, J. U.

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

Kaufman, K. S.

Kim, D. Y.

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

Kohler, R.

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

Kumar, A.

Liu, G.

Marcuse, D.

Mathis, R. F.

Mederer, F.

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

Michalzik, R.

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

Moon, S.

S. Moon, G. Liu, and Z. Chen, “Mode-filtered large-core fiber for short-pulse delivery with reduced nonlinear effects,” Opt. Lett. 36, 3362–3364 (2011).
[CrossRef]

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

Moser, M.

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Plant, D. V.

Z. Tian, C. Chen, and D. V. Plant, “850 nm VCSEL transmission over standard single-mode fiber using fiber mode filter,” IEEE Photon. Technol. Lett. 24, 368–370 (2012).
[CrossRef]

Royo, P.

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

Schnitzer, P.

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

Sharma, U.

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

Terras, R.

Thyagarajan, K.

Tian, Z.

Z. Tian, C. Chen, and D. V. Plant, “850 nm VCSEL transmission over standard single-mode fiber using fiber mode filter,” IEEE Photon. Technol. Lett. 24, 368–370 (2012).
[CrossRef]

Vez, D.

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

Wiedenmann, D.

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

D. Vez, S. G. Hunziker, R. Kohler, P. Royo, M. Moser, and W. Bächtold, “850 nm vertical-cavity laser pigtailed to standard singlemode fibre for radio over fibre transmission,” Electron. Lett. 40, 1210–1211 (2004).
[CrossRef]

IEEE J. Lightwave Technol. (1)

D. Ðonlagić, “In-line higher order mode filters based on long highly uniform fiber tapers,” IEEE J. Lightwave Technol. 24, 3532–3539 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. Schnitzer, R. Jager, C. Jung, R. Michalzik, D. Wiedenmann, F. Mederer, and K. J. Ebeling, “Biased and bias-free multi-Gb/s data links using GaAs VCSELs and 1300-nm single-mode fiber,” IEEE Photon. Technol. Lett. 10, 1781–1783 (1998).
[CrossRef]

S. Moon and D. Y. Kim, “Effective single-mode transmission at wavelengths shorter than the cutoff wavelength of an optical fiber,” IEEE Photon. Technol. Lett. 17, 2604–2606 (2005).
[CrossRef]

Z. Tian, C. Chen, and D. V. Plant, “850 nm VCSEL transmission over standard single-mode fiber using fiber mode filter,” IEEE Photon. Technol. Lett. 24, 368–370 (2012).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102 (2007).
[CrossRef]

Other (1)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optimal bend radius for mode filtering bounded by the suppression-limited radius, Rs (dotted curve) and the loss-limited radius, Rl (solid curve), which were calculated with the parameters of the LCF.

Fig. 2.
Fig. 2.

Transmitted power of the fiber bends characterized by the number of turns (Nt) and the bend radius (R), which was measured at (a) 1.31 and (b) 1.05 μm, respectively.

Fig. 3.
Fig. 3.

Microscopic images of the LCF output (a) without a fiber coil and (b) with a coil in place for λ=1.05μm, R=16mm and Nt=6, along with (c) the intensity profile with a coil in place for λ=1.31μm, R=26mm and Nt=6.

Fig. 4.
Fig. 4.

Schematic diagram of (a) the fiber winder and (b) the transmitted power as a function of the number of turns for R=27mm, measured at λ=1.31μm.

Fig. 5.
Fig. 5.

Intensity decrease along the fiber axis out of the LCF: measured data (▪) and that of the best fitted Gaussian beam (dotted curve) along with the relative beam diameter of the Gaussian beam (solid gray curve).

Fig. 6.
Fig. 6.

Schematic diagram of the fiber-optic interferometric reflectometer used in the experiment.

Fig. 7.
Fig. 7.

Sensitivity role-off characteristic (a) and the reflectogram of a 0.15 mm thick glass plate (b).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

zR=πw02λ,
V=2πaλ·NA2πan12Δλ
LdB[dB]=4.3×2aU2e2WemπW5/2R3/2V2|Hμ(2)(ξ)|2·Km1(W)·Km+1(W),
Δt=L·neffΔc·δ,

Metrics