Abstract

An ultracompact polarization splitter–rotator based on an asymmetric directional coupler has been designed and analyzed. The device consists of one channel waveguide and one vertical slot waveguide, which couple to each other to form the asymmetric directional coupler. The coupling length is only 17.4 μm, and the polarization extinction ratio, with its largest value of 18 dB, is more than 15 dB in the operating wavelength range from 1515 to 1560 nm. The TM-to-TE conversion efficiency can reach up to 95% (0.02 dB) at 1550 nm wavelength.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
    [CrossRef]
  2. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [CrossRef]
  3. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
    [CrossRef]
  4. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19, 13063–13072 (2011).
    [CrossRef]
  5. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
    [CrossRef]
  6. Y. Yue, L. Zhang, J.-Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett. 35, 1364–1366 (2010).
    [CrossRef]
  7. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101–151103 (2011).
    [CrossRef]
  8. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
    [CrossRef]
  9. Y.-F. Ma and D.-W. Huang, “A compact slot waveguide directional coupler-based silicon-on-insulator polarization splitter,” in Proceedings of the 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 297–298.
  10. M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
    [CrossRef]
  11. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
    [CrossRef]
  12. J. Fan, C. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” AIP Adv. 1, 042136 (2011).
    [CrossRef]
  13. J. Yamauchi, M. Yamanoue, and H. Nakano, “A short polarization converter using a triangular waveguide,” J. Lightwave Technol. 26, 1708–1714 (2008).
    [CrossRef]
  14. B. Wohlfeil, L. Zimmermann, and K. Petermann, “Asymmetric codirectional coupler between regular nanowaveguide and slot-waveguide for polarization conversion,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper ITu2B.5.
  15. A. V. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. A. Ramos, Í. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D.-X. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37, 365–367 (2012).
    [CrossRef]
  16. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19, 12646–12651 (2011).
    [CrossRef]
  17. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012).
    [CrossRef]
  18. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter–rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [CrossRef]
  19. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]
  20. T. Baehr–Jones, M. Hochberg, G. Wang, R. Lawson, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216 (2005).
    [CrossRef]
  21. X. Tu, J. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. Yu, and G.-Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20, 2640–2648 (2012).
    [CrossRef]
  22. A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
    [CrossRef]
  23. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, “Ultracompact low-loss coupler between strip and slot waveguides,” Opt. Lett. 34, 1498–1500 (2009).
    [CrossRef]
  24. FIMMWAVE/FIMMPROP, Photon Design Ltd., http://www.photond.com .
  25. L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
    [CrossRef]

2012

2011

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101–151103 (2011).
[CrossRef]

J. Fan, C. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” AIP Adv. 1, 042136 (2011).
[CrossRef]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011).
[CrossRef]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter–rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[CrossRef]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19, 12646–12651 (2011).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19, 13063–13072 (2011).
[CrossRef]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590–2592 (2011).
[CrossRef]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
[CrossRef]

2010

2009

2008

2007

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

2005

2004

1999

Alasaarela, T.

Almeida, V. R.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

Baehr–Jones, T.

Baets, R.

Barrios, C. A.

Barth, U.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Bauerdick, S.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Beausoleil, R. G.

Bogaerts, W.

Bowers, J. E.

Bruchhaus, L.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Calvo, M. L.

Cheben, P.

Crozier, K. B.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101–151103 (2011).
[CrossRef]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

Dai, D.

Dalton, L.

Ding, Y.

Dumon, P.

Fan, J.

J. Fan, C. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” AIP Adv. 1, 042136 (2011).
[CrossRef]

Fan, S.

Fernandez, Í. M.

Fukuda, H.

Gierak, J.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Haus, H. A.

He, S.

Hiltunen, M.

Hochberg, M.

Honkanen, S.

Hövel, H.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Hu, J.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101–151103 (2011).
[CrossRef]

Huang, C.

J. Fan, C. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” AIP Adv. 1, 042136 (2011).
[CrossRef]

Huang, D.-W.

Y.-F. Ma and D.-W. Huang, “A compact slot waveguide directional coupler-based silicon-on-insulator polarization splitter,” in Proceedings of the 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 297–298.

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[CrossRef]

Itabashi, S.

Janz, S.

Jen, A. K.-Y.

Joannopoulos, J. D.

Johnson, S. G.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Karvonen, L.

Kee, J. S.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

Klingfus, J.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Lapointe, J.

Lawson, R.

Lin, S.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101–151103 (2011).
[CrossRef]

Liow, T. Y.

Liow, T.-Y.

Lipson, M.

Liu, L.

Lo, G. Q.

Lo, G.-Q.

Ma, Y.-F.

Y.-F. Ma and D.-W. Huang, “A compact slot waveguide directional coupler-based silicon-on-insulator polarization splitter,” in Proceedings of the 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 297–298.

Manolatou, C.

Mussmann, J.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Nakano, H.

Ortega-Moñux, A.

Ou, H.

Park, M. K.

Petermann, K.

B. Wohlfeil, L. Zimmermann, and K. Petermann, “Asymmetric codirectional coupler between regular nanowaveguide and slot-waveguide for polarization conversion,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper ITu2B.5.

Peto, L.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Peucheret, C.

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Ramos, C. A.

Rudzinski, A.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Säynätjoki, A.

Scherer, A.

Schmid, J. H.

Shinojima, H.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Song, J.

Sullivan, P. A.

Taillaert, D.

Tang, Y.

Tervonen, A.

Tsuchizawa, T.

Tu, X.

Vachon, M.

Van Thourhout, D.

Velasco, A. V.

Villeneuve, P. R.

Wang, G.

Wang, Z.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

M. R. Watts, H. A. Haus, and E. P. Ippen, “Integrated mode-evolution-based polarization splitter,” Opt. Lett. 30, 967–969 (2005).
[CrossRef]

Willner, A. E.

Wohlfeil, B.

B. Wohlfeil, L. Zimmermann, and K. Petermann, “Asymmetric codirectional coupler between regular nanowaveguide and slot-waveguide for polarization conversion,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper ITu2B.5.

Wosinski, L.

Xu, D.-X.

Xu, Q.

Yamada, K.

Yamanoue, M.

Yamauchi, J.

Yang, J.-Y.

Yiying, J. Q.

Yu, M.

Yue, Y.

Yvind, K.

Zhang, L.

Zhu, L.

J. Fan, C. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” AIP Adv. 1, 042136 (2011).
[CrossRef]

Zhu, N.

Zimmermann, L.

B. Wohlfeil, L. Zimmermann, and K. Petermann, “Asymmetric codirectional coupler between regular nanowaveguide and slot-waveguide for polarization conversion,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper ITu2B.5.

AIP Adv.

J. Fan, C. Huang, and L. Zhu, “A compact, broadband slot waveguide polarization rotator,” AIP Adv. 1, 042136 (2011).
[CrossRef]

Appl. Phys. Lett.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98, 151101–151103 (2011).
[CrossRef]

IEEE Photonics Technol. Lett.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17, 100–102 (2005).
[CrossRef]

J. Lightwave Technol.

Microelectron. Eng.

L. Bruchhaus, S. Bauerdick, L. Peto, U. Barth, A. Rudzinski, J. Mussmann, J. Klingfus, J. Gierak, and H. Hövel, “High resolution and high density ion beam lithography employing HSQ resist,” Microelectron. Eng. 97, 48–50(2012).
[CrossRef]

Nat. Photonics

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[CrossRef]

Opt. Express

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter–rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[CrossRef]

L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19, 12646–12651 (2011).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A tunable polarization diversity silicon photonics filter,” Opt. Express 19, 13063–13072 (2011).
[CrossRef]

Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012).
[CrossRef]

T. Baehr–Jones, M. Hochberg, G. Wang, R. Lawson, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, “Optical modulation and detection in slotted silicon waveguides,” Opt. Express 13, 5216 (2005).
[CrossRef]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008).
[CrossRef]

A. Säynätjoki, L. Karvonen, T. Alasaarela, X. Tu, T. Y. Liow, M. Hiltunen, A. Tervonen, G. Q. Lo, and S. Honkanen, “Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition,” Opt. Express 19, 26275–26282 (2011).
[CrossRef]

X. Tu, J. Song, T.-Y. Liow, M. K. Park, J. Q. Yiying, J. S. Kee, M. Yu, and G.-Q. Lo, “Thermal independent silicon-nitride slot waveguide biosensor with high sensitivity,” Opt. Express 20, 2640–2648 (2012).
[CrossRef]

Opt. Lett.

Other

B. Wohlfeil, L. Zimmermann, and K. Petermann, “Asymmetric codirectional coupler between regular nanowaveguide and slot-waveguide for polarization conversion,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper ITu2B.5.

FIMMWAVE/FIMMPROP, Photon Design Ltd., http://www.photond.com .

Y.-F. Ma and D.-W. Huang, “A compact slot waveguide directional coupler-based silicon-on-insulator polarization splitter,” in Proceedings of the 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 297–298.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Structure of the PSR and (b) the cross section of the coupling region.

Fig. 2.
Fig. 2.

Effective indices of the SW and CW as a function of the waveguide width.

Fig. 3.
Fig. 3.

Conversion efficiency of the four types of mode transforming as a function of the coupling length in the (a) through port and (b) cross port. (The conversion efficiencies that are not presented are below 25dB.)

Fig. 4.
Fig. 4.

Mode field of the propagation for (a) the quasi-TE mode and (b) the quasi-TM mode.

Fig. 5.
Fig. 5.

Conversion efficiency versus the wavelength for (a) the through port and (b) the cross port. (The conversion efficiencies that are not presented are below 30dB.)

Fig. 6.
Fig. 6.

Conversion efficiency as a function of width for the (a) through port and (b) cross port. (The conversion efficiencies that are not presented are below 35dB.)

Fig. 7.
Fig. 7.

Conversion efficiency as a function of Ws for (a) the through port and (b) the cross port. (The conversion efficiencies that are not presented are below 35dB.)

Fig. 8.
Fig. 8.

Conversion efficiency as a function of gap.

Metrics